Impacts of land use change on soil carbon storage and phosphorus fractions in tropics

被引:0
|
作者
Mahmood, Mohsin [1 ]
Ahmed, Waqas [2 ]
Ayyoub, Anam [3 ]
Elrys, Ahmed Salah [4 ,5 ]
Mustafa, Adnan [6 ]
Li, Weidong [2 ]
Xu, Zhuwen [1 ]
机构
[1] Inner Mongolia Univ, Sch Ecol & Environm, Key Lab Ecol & Resource Use Mongolian Plateau, Minist Educ, Hohhot 010021, Peoples R China
[2] Hainan Univ, Key Lab Agroforestry Environm Proc & Ecol Regulat, Haikou 570228, Peoples R China
[3] Northwest A&F Univ, Coll Life Sci, Yangling 712100, Peoples R China
[4] Zagazig Univ, Fac Agr, Soil Sci Dept, Zagazig 44511, Egypt
[5] Justus Liebig Univ, Liebig Ctr Agroecol & Climate Impact Res, Giessen, Germany
[6] Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, Guangzhou 510650, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil depth; Land use systems; Organic carbon; Carbon density; Phosphorus fractions; Soil health; ORGANIC-CARBON; NITROGEN; SEQUESTRATION; WHEAT; WATER; LIMITATION; MANAGEMENT; RESPONSES; MATTER; STOCKS;
D O I
10.1016/j.catena.2024.108550
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Human-induced land use transformations in tropical regions have notably impacted soil nutrient dynamics, particularly of carbon (C) and phosphorus (P). This study investigates soil C stocks and P fractions across six distinct land use types (fallow, residential, woodland, garden plots, cultivated lands, and grasslands) and their influence on soil P distribution at varying soil depths in Hainan Island, China. Higher concentrations of total carbon (TC) and soil organic carbon (SOC) were found in woodland (1.29 %, 1.21 %), garden plot (1.18 %, 1.1 %), and grassland (1.12 %, 1.02 %) soils at the topsoil (0-20 cm), with a noticeable decrease in deep soil layers (20-180 cm) compared to fallow, residential, and cultivated lands. In deeper soil layers (20-100 cm and 100-180 cm), woodland and grassland soils exhibited higher SOC and TC densities (10.09, 15.77 kg m- 2 ; 15.29, 17.03 kg m- 2 , respectively). Using Hedley's modified Tiessen and Moir scheme, P fractionation analysis indicated P limitation in different land use systems. Grassland soils had higher organic P fractions (NaOH-Po, NaHCO3-Po, HClc-Po) at 0-20 cm depth, remaining consistent at deeper layers. In cultivated and grassland soils, the inorganic P fraction (HClD-Pi) was the most significant contributor to total P across all depths. There was a steady trend in residual P across the land use depths. Correlations between labile (NaHCO3-Pi, NaHCO3-Po), moderately (NaOH-Po, NaOH-Pi, HClD-Pi) available P fractions and carbon stocks across all depths further revealed the crucial role of SOC in the regulation of P availability. It can thus be concluded that land use differentially influences SOC and P storage potential in Hainan Island, with divergence in soil layers. These findings highlight the significance of region-specific land management practices for maintaining soil health to mitigate climate change.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Dynamics of Soil Organic Carbon Storage and Erosion due to Land Use Change (Illinois, USA)
    Olson, K. R.
    Gennadiev, A. N.
    EURASIAN SOIL SCIENCE, 2020, 53 (04) : 436 - 445
  • [32] Land use change and soil organic carbon dynamics
    Smith, Pete
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2008, 81 (02) : 169 - 178
  • [33] Dynamics of Soil Organic Carbon Storage and Erosion due to Land Use Change (Illinois, USA)
    K. R. Olson
    A. N. Gennadiev
    Eurasian Soil Science, 2020, 53 : 436 - 445
  • [34] Mechanisms for changes in soil carbon storage with pasture to Pinus radiata land-use change
    Halliday, JC
    Tate, KR
    McMurtrie, RE
    Scott, NA
    GLOBAL CHANGE BIOLOGY, 2003, 9 (09) : 1294 - 1308
  • [35] Effect of land use change on soil carbon in Hawaii
    Osher, LJ
    Matson, PA
    Amundson, R
    BIOGEOCHEMISTRY, 2003, 65 (02) : 213 - 232
  • [36] Effect of land use change on soil carbon in Hawaii
    Laurie J. Osher
    Pamela A. Matson
    Ronald Amundson
    Biogeochemistry, 2003, 65 : 213 - 232
  • [37] Land use change and soil organic carbon dynamics
    Pete Smith
    Nutrient Cycling in Agroecosystems, 2008, 81 : 169 - 178
  • [38] Evaluation of the Impacts of Change in Land Use/Cover on Carbon Storage in Multiple Scenarios in the Taihang Mountains, China
    Guo, Huanchao
    He, Shi
    Jing, Haitao
    Yan, Geding
    Li, Hui
    SUSTAINABILITY, 2023, 15 (19)
  • [39] Soil carbon fractions influenced by temperature sensitivity and land use management
    M. Lalitha
    Praveen Kumar
    Agroforestry Systems, 2016, 90 : 961 - 964
  • [40] Soil carbon and nitrogen fractions in response to land use/cover changes
    Haghverdi, Katayoun
    Kooch, Yahya
    ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 2020, 109