Edge-Guided Bidirectional-Attention Residual Network for Polyp Segmentation

被引:0
作者
Wu, Lanhu [1 ]
Zhang, Miao [1 ]
Piao, Yongri [1 ]
Li, Zhiwei [1 ]
Lu, Huchuan [1 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XIV | 2025年 / 15044卷
基金
中国国家自然科学基金;
关键词
Polyp segmentation; Edge enhancement; Bi-directional attention; Multi-scale feature extraction; Global-local information;
D O I
10.1007/978-981-97-8496-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precise polyp segmentation provides important information in the early detection of colorectal cancer in clinical practice. However, it is a challenging task for two major reasons: 1) the color and texture of polyps are very similar to surrounding mucosa especially in the edge area; 2) the polyps often vary largely in scale, shape and location. To this end, we propose an edge-guided bidirectional-attention residual network (EBRNet) equipped with an edge-guided bidirectional-attention residual module (EBRM) and a context enrichment layer (CEL). The proposed EBRM focuses on both foreground and background regions for detail recovery and noise suppression to capture the camouflaged polyps in cluttered tissue, and introduces edge cues for accurate boundaries. The CEL enriches the contextual semantics in multiple levels to adaptively detect the polyps in various sizes, shapes and locations. Extensive experiments on five benchmark datasets demonstrate that our EBRNet performs favorably against most state-of-the-art methods under different evaluation metrics. The source code will be publicly available at https://github.com/LanhooNg/EBRNet.
引用
收藏
页码:249 / 263
页数:15
相关论文
共 32 条
  • [1] Akbari M, 2018, IEEE ENG MED BIO, P69, DOI 10.1109/EMBC.2018.8512197
  • [2] Alexey D, 2020, arXiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
  • [3] WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians
    Bernal, Jorge
    Javier Sanchez, F.
    Fernandez-Esparrach, Gloria
    Gil, Debora
    Rodriguez, Cristina
    Vilarino, Fernando
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 : 99 - 111
  • [4] Fully Convolutional Neural Networks for Polyp Segmentation in Colonoscopy
    Brandao, Patrick
    Mazomenos, Evangelos
    Ciuti, Gastone
    Calio, Renato
    Bianchi, Federico
    Menciassi, Arianna
    Dario, Paolo
    Koulaouzidis, Anastasios
    Arezzo, Alberto
    Stoyanov, Danail
    [J]. MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [5] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [6] Attentional Feature Fusion
    Dai, Yimian
    Gieseke, Fabian
    Oehmcke, Stefan
    Wu, Yiquan
    Barnard, Kobus
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3559 - 3568
  • [7] Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26
  • [8] Dong B, 2024, Arxiv, DOI [arXiv:2108.06932, 10.48550/arXiv.2108.06932]
  • [9] Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation
    Fang, Yuqi
    Chen, Cheng
    Yuan, Yixuan
    Tong, Kai-yu
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 302 - 310
  • [10] Kvasir-SEG: A Segmented Polyp Dataset
    Jha, Debesh
    Smedsrud, Pia H.
    Riegler, Michael A.
    Halvorsen, Pal
    de Lange, Thomas
    Johansen, Dag
    Johansen, Havard D.
    [J]. MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 : 451 - 462