The Lomonosov type theorems and the invariant subspace problem for non-archimedean Banach spaces

被引:0
|
作者
El Asri, A. [1 ]
Kubzdela, A. [2 ]
Babahmed, M. [1 ]
机构
[1] Moulay Ismail Univ, Fac Sci, Dept Math, Meknes, Morocco
[2] Univ Technol, Inst Civil Engn, Poznan, Poland
关键词
Invariant subspace; Hyperinvariant subspace; Compact operator; Non-archimedean Banach space;
D O I
10.1016/j.jmaa.2024.129043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of invariant (and even hyperinvariant) subspaces of bounded operators on a non-archimedean Banach space E=(E, ||.||) over a valued field K equipped with a non-trivial non-archimedean valuation |.|. Specifically, we consider compact operators and operators that commute with a compact operator. First we show that if E has a base, then any compact operator T such that lim(n)||T-n||(1/n) > 0 has a finite-dimensional hyperinvariant subspace. Next we show that if K is locally compact, then every compact operator T on E has a hyperinvariant subspace. Afterward, assuming that K is spherically complete or E is of countable type, we provide a necessary condition for a bounded operator on E to have a hyperinvariant subspace. We demonstrate that the classical Lomonosov Invariant Subspace theorem does not hold in the case where K is non-spherically complete. Finally, we prove Lomonosov type theorem for spectral quasinilpotent operators, when K is locally compact. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] ON THE INVARIANT SUBSPACE PROBLEM FOR BANACH-SPACES
    ENFLO, P
    ACTA MATHEMATICA, 1987, 158 (3-4) : 213 - 313
  • [32] Suzuki type theorems in triangular and non-Archimedean fuzzy metric spaces with application
    Nawab Hussain
    Masoomeh Hezarjaribi
    Peyman Salimi
    Fixed Point Theory and Applications, 2015
  • [33] Suzuki type theorems in triangular and non-Archimedean fuzzy metric spaces with application
    Hussain, Nawab
    Hezarjaribi, Masoomeh
    Salimi, Peyman
    FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [34] ON SPACES OF COMPACT-OPERATORS IN NON-ARCHIMEDEAN BANACH-SPACES
    KIYOSAWA, T
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (04): : 450 - 458
  • [35] CAUCHY-JENSEN FUNCTIONAL INEQUALITY IN BANACH SPACES AND NON-ARCHIMEDEAN BANACH SPACES
    Chang, Ick-Soon
    Gordji, M. Eshaghi
    Kim, Hark-Mahn
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (07) : 1237 - 1247
  • [36] Orthonormal bases for non-archimedean Banach spaces of continuous functions
    Verdoodt, A
    P-ADIC FUNCTIONAL ANALYSIS, 1999, 207 : 323 - 331
  • [37] On Countable Tightness and the Lindelof Property in Non-Archimedean Banach Spaces
    Kakol, Jerzy
    Kubzdela, Albert
    Perez-Garcia, Cristina
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (01) : 181 - 199
  • [38] On Pencil of Bounded Linear Operators on Non-archimedean Banach Spaces
    El Amrani, A.
    Ettayb, J.
    Blali, A.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 13 - 13
  • [40] NON-ARCHIMEDEAN BANACH ALGEBRAS
    FREUND, RF
    WONG, TT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A363 - A363