The Lomonosov type theorems and the invariant subspace problem for non-archimedean Banach spaces

被引:0
|
作者
El Asri, A. [1 ]
Kubzdela, A. [2 ]
Babahmed, M. [1 ]
机构
[1] Moulay Ismail Univ, Fac Sci, Dept Math, Meknes, Morocco
[2] Univ Technol, Inst Civil Engn, Poznan, Poland
关键词
Invariant subspace; Hyperinvariant subspace; Compact operator; Non-archimedean Banach space;
D O I
10.1016/j.jmaa.2024.129043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of invariant (and even hyperinvariant) subspaces of bounded operators on a non-archimedean Banach space E=(E, ||.||) over a valued field K equipped with a non-trivial non-archimedean valuation |.|. Specifically, we consider compact operators and operators that commute with a compact operator. First we show that if E has a base, then any compact operator T such that lim(n)||T-n||(1/n) > 0 has a finite-dimensional hyperinvariant subspace. Next we show that if K is locally compact, then every compact operator T on E has a hyperinvariant subspace. Afterward, assuming that K is spherically complete or E is of countable type, we provide a necessary condition for a bounded operator on E to have a hyperinvariant subspace. We demonstrate that the classical Lomonosov Invariant Subspace theorem does not hold in the case where K is non-spherically complete. Finally, we prove Lomonosov type theorem for spectral quasinilpotent operators, when K is locally compact. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Commutators on Banach spaces over non-Archimedean fields
    Sliwa, Wieslaw
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [22] GROUP REPRESENTATIONS IN NON-ARCHIMEDEAN BANACH-SPACES
    VANROOIJ, AC
    SCHIKHOF, WH
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1974, (39-4): : 329 - 340
  • [23] HOMEOMORPHIC AND DIFFERENTIABLE MAPPINGS - NON-ARCHIMEDEAN BANACH SPACES
    TREIBER, D
    MANUSCRIPTA MATHEMATICA, 1973, 8 (02) : 173 - 188
  • [24] Bounded approximation properties in non-archimedean Banach spaces
    Perez-Garcia, C.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (10) : 1255 - 1263
  • [25] Sequence of Linear Operators in Non-Archimedean Banach Spaces
    Aymen Ammar
    Aref Jeribi
    Nawrez Lazrag
    Mediterranean Journal of Mathematics, 2019, 16
  • [26] Sequence of Linear Operators in Non-Archimedean Banach Spaces
    Ammar, Aymen
    Jeribi, Aref
    Lazrag, Nawrez
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)
  • [27] SCHAUDER DECOMPOSITIONS OF NON-ARCHIMEDEAN BANACH-SPACES
    KIYOSAWA, T
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (01) : 249 - 259
  • [28] Measures of Weak Noncompactness in Non-Archimedean Banach Spaces
    Angosto, C.
    Kakol, J.
    Kubzdela, A.
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (03) : 833 - 849
  • [29] New Examples of Non-Archimedean Banach Spaces and Applications
    Perez-Garcia, C.
    Schikhof, W. H.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 821 - 829
  • [30] Commutators on Banach spaces over non-Archimedean fields
    Wiesław Śliwa
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116