Flowering delay in apple could alleviate frost-induced yield loss under climate change in China

被引:0
|
作者
Chen, Renwei [1 ]
Wang, Jing [1 ]
Wang, Bin [2 ]
Li, Yang [3 ]
Bai, Rui [1 ]
Huang, Mingxia [4 ]
Qu, Zhenjiang [5 ]
Liu, Lu [6 ]
机构
[1] China Agr Univ, Coll Resources & Environm Sci, Beijing 100193, Peoples R China
[2] Wagga Agr Inst, NSW Dept Primary Ind, Wagga Wagga, NSW 2650, Australia
[3] Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China
[4] China Meteorol Adm, Natl Climate Ctr, Beijing 100081, Peoples R China
[5] Shaanxi Meteorol Training Ctr, Shaanxi Meteorol Serv, Xian 710016, Peoples R China
[6] Shaanxi Meteorol Serv, Emergency & Disaster Reduct Div, Xian 710016, Peoples R China
关键词
Apple ( Malus domestica borkh.); Climate change; Flower; Frost; Yield; ECOSYSTEM SERVICES; FRUIT-TREES; PHENOLOGY; IMPACTS; RISK; TEMPERATURE; STRATEGIES; PROTECTION; RESPONSES; DORMANCY;
D O I
10.1016/j.agrformet.2024.110313
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Apple is one of the globally significant perennial fruits, with high consumption driven by the demand for nutritional food diversity and population growth. There is a lack of understanding with respect to the potential consequences of climate change, particularly the impact of spring frost - a frequent agrometeorological disaster on apple yield. Here we used a process-based apple model driven by five climate models to evaluate climate change impacts and the potential adaptation potential in China's apple planting region under climate change. Our study used the process-based STICS model developed by INRAE, France, driven by five global climate models (GCMs; FGOALS-g3, GFDL-ESM4, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL) to evaluate the impacts of climate change including spring frost on apple yield in China's apple planting region and explore the possible adaptation strategy by increasing thermal time required to complete the phase from budbreak to first flower opening with increments of 10%, 30%, 50%, 70%, and 90% in the STICS model at frost-sensitive sites under two emission scenarios (SSP245 and SSP585) during two periods of 2050s (2040-2069) and 2080s (2070-2099). We found the robust performance of the STICS model in simulating phenology and yield of apple across China's apple planting regions. While climate change exerts a slightly positive impact on apple yields with large spatial variation in the staple apple production regions, intensified spring frost under climate change would aggravate apple yield loss. We found that delaying flowering time can increase yield by up to 10% at the frost-sensitive sites. Our results highlight the importance of effective adaptation options to reduce frost-induced apple yield loss under climate change in China's apple planting region.
引用
收藏
页数:12
相关论文
共 41 条
  • [11] Thermal Time Requirements for Maize Growth in Northeast China and Their Effects on Yield and Water Supply under Climate Change Conditions
    Mi, Na
    Cai, Fu
    Zhang, Shujie
    Zhang, Yushu
    Ji, Ruipeng
    Chen, Nina
    Ji, Yanghui
    Wang, Dongni
    WATER, 2021, 13 (19)
  • [12] Effects of drought on maize yield under climate change in China
    Xu K.
    Zhu X.
    Liu Y.
    Guo R.
    Chen L.
    Zhu, Xiufang (zhuxiufang@bnu.edu.cn), 1600, Chinese Society of Agricultural Engineering (36): : 149 - 158
  • [13] Prediction of the global occurrence of maize diseases and estimation of yield loss under climate change
    Ma, Zihui
    Wang, Wenbao
    Chen, Xuanjing
    Gehman, Katrina
    Yang, Hua
    Yang, Yuheng
    PEST MANAGEMENT SCIENCE, 2024, 80 (11) : 5759 - 5770
  • [14] Impact of flowering temperature on litchi yield under climate change: A case study in Taiwan
    Hwang, Ya-Wen
    Hsu, Yung-Heng
    Chen, Yung-Ming
    CLIMATE SERVICES, 2024, 34
  • [15] Modulation of photosynthate supply by CO2 elevation affects the post-head-emergence frost-induced grain yield loss in wheat
    Li, Xiangnan
    Li, Yafei
    Zhu, Xiancan
    Liu, Shengqun
    Liu, Fulai
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2019, 205 (01) : 54 - 64
  • [16] Selecting traits to increase winter wheat yield under climate change in the North China Plain
    Fang, Qin
    Zhang, Xiying
    Chen, Suying
    Shao, Liwei
    Sun, Hongyong
    FIELD CROPS RESEARCH, 2017, 207 : 30 - 41
  • [17] Shrinking Habitats and Native Species Loss Under Climate Change: A Multifactorial Risk Assessment of China's Inland Wetlands
    Zhong, Yehui
    Xue, Zhenshan
    Davis, Charles C.
    Moreno-Mateos, David
    Jiang, Ming
    Liu, Bo
    Wang, Guodong
    EARTHS FUTURE, 2022, 10 (06)
  • [18] Plausible changes in wheat-growing periods and grain yield in China triggered by future climate change under multiple scenarios and periods
    Liu, Yujie
    Chen, Qiaomin
    Chen, Jie
    Pan, Tao
    Ge, Quansheng
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (741) : 4371 - 4387
  • [19] Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain
    Zhang, Xubo
    Xu, Minggang
    Sun, Nan
    Xiong, Wei
    Huang, Shaomin
    Wu, Lianhai
    GEODERMA, 2016, 265 : 176 - 186
  • [20] Predicting the Potential Distribution of Apple Canker Pathogen (Valsa mali) in China under Climate Change
    Xu, Wei
    Sun, Hongyun
    Jin, Jingwei
    Cheng, Jimin
    FORESTS, 2020, 11 (11): : 1 - 22