Genome-Wide Identification and Expression Analysis of Hexokinase Gene Family Under Abiotic Stress in Tomato

被引:1
|
作者
Li, Jing [1 ,2 ]
Yao, Xiong [2 ]
Zhang, Jianling [3 ]
Li, Maoyu [4 ]
Xie, Qiaoli [1 ]
Yang, Yingwu [1 ]
Chen, Guoping [1 ]
Zhang, Xianwei [2 ]
Hu, Zongli [1 ]
机构
[1] Chongqing Univ, Bioengn Coll, Lab Mol Biol Tomato, Room 523-1,Campus B,174 Shapingba Main St, Chongqing 400030, Peoples R China
[2] Chongqing Acad Agr Sci, Chongqing 401329, Peoples R China
[3] Liaocheng Univ, Coll Agr & Biol, Lab Plant Germplasm Resources Innovat & Utilizat, Liaocheng 252000, Peoples R China
[4] Chongqing Seed Stn, Chongqing 401121, Peoples R China
来源
PLANTS-BASEL | 2025年 / 14卷 / 03期
基金
中国国家自然科学基金;
关键词
tomato; hexokinase; molecular characterization; expression pattern; abiotic stress; ARABIDOPSIS HEXOKINASE-LIKE1; PLANT HEXOKINASES; ABSCISIC-ACID; CELL-DEATH; GLUCOSE; SUGAR; METABOLISM; FEATURES; CLONING; EIN3;
D O I
10.3390/plants14030441
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In plants, hexokinase (HXK) is a kind of bifunctional enzyme involved in sugar metabolism and sugar signal transduction that plays important roles in plant growth and development and stress response. Some HXK genes without a phosphorylation function have been found in Arabidopsis, tobacco, etc., but these genes have not been identified in tomato. Therefore, further genome-wide systematic identification and characterization is necessary for tomato HXK genes. In this study, six HXK genes were identified from the tomato genome distributed across six different chromosomes, named SlHXK1-6. Gene structure analysis showed that the SlHXK genes contain the same number of introns and exons. Gene duplication and collinearity analysis revealed two pairs of tandem repeats among SlHXKs, and a higher collinearity between tomatoes and potatoes were found. Response elements associated with phytohormones, abiotic stresses, and growth and development were identified in the promoter sequences of SlHXKs. Quantitative real-time PCR (qRT-PCR) results further indicated the potential role of SlHXKs in tomato development and stress responses. The expression levels of most SlHXKs were significantly induced by abiotic stress, hormone, and sugar solution treatments. In particular, the expression of SlHXK1 was significantly induced by various treatments. Functional complementation experiments were performed using HXK-deficient yeast strain YSH7.4-3C (hxk1, hxk2, and glk1), and the results showed that SlHXK5 and SlHXK6 were unable to phosphorylate glucose and fructose in yeast. In conclusion, these results provide valuable foundations for further exploring the sugar metabolism and sugar signal transduction mechanisms of HXK and the functions of SlHXK genes in various abiotic stresses, and some SlHXKs may be key genes for enhancing plants' tolerance to abiotic stresses.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Genome-wide identification and expression analysis of the ASMT gene family reveals their role in abiotic stress tolerance in apple
    Wang, Hongtao
    Song, Chunhui
    Fang, Sen
    Wang, Zhengyang
    Song, Shangwei
    Jiao, Jian
    Wang, Miaomiao
    Zheng, Xianbo
    Bai, Tuanhui
    SCIENTIA HORTICULTURAE, 2022, 293
  • [42] Genome-Wide Identification of the HMA Gene Family and Expression Analysis under Cd Stress in Barley
    Zhang, Chiran
    Yang, Qianhui
    Zhang, Xiaoqin
    Zhang, Xian
    Yu, Tongyuan
    Wu, Yuhuan
    Fang, Yunxia
    Xue, Dawei
    PLANTS-BASEL, 2021, 10 (09):
  • [43] Genome-Wide Identification of the CIPK Gene Family in Jasmine and Expression Analysis Under Salt Stress
    Zhang, Shuang
    Huang, Xin
    Yin, Lili
    Li, Jiawei
    Xu, Jiacan
    Wu, Ruigang
    HORTICULTURAE, 2025, 11 (01)
  • [44] Genome-Wide Identification and Expression Analysis of the High-Mobility Group B (HMGB) Gene Family in Plant Response to Abiotic Stress in Tomato
    Zheng, Jinhui
    Tang, Huimeng
    Wang, Jianquan
    Liu, Yue
    Ge, Lianjing
    Liu, Guobiao
    Shi, Qinghua
    Zhang, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [45] Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat
    Xiao, Jie
    Hu, Rui
    Gu, Ting
    Han, Jiapeng
    Qiu, Ding
    Su, Peipei
    Feng, Jialu
    Chang, Junli
    Yang, Guangxiao
    He, Guangyuan
    BMC GENOMICS, 2019, 20 (1)
  • [46] Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz)
    Ou, Wenjun
    Mao, Xiang
    Huang, Chao
    Tie, Weiwei
    Yan, Yan
    Ding, Zehong
    Wu, Chunlai
    Xia, Zhiqiang
    Wang, Wenquan
    Zhou, Shiyi
    Li, Kaimian
    Hu, Wei
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [47] Genome-wide identification and expression analysis of the CBF transcription factor family in Lolium perenne under abiotic stress
    Wang, Dan
    Cui, Binyu
    Guo, Hanyu
    Liu, Yaxi
    Nie, Shuming
    PLANT SIGNALING & BEHAVIOR, 2023, 18 (01)
  • [48] Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat
    Jie Xiao
    Rui Hu
    Ting Gu
    Jiapeng Han
    Ding Qiu
    Peipei Su
    Jialu Feng
    Junli Chang
    Guangxiao Yang
    Guangyuan He
    BMC Genomics, 20
  • [49] Genome-wide identification of the AAT gene family in quinoa and analysis of its expression pattern under abiotic stresses
    Li, Hanxue
    Jiang, Chunhe
    Liu, Junna
    Zhang, Ping
    Li, Li
    Li, Rongbo
    Huang, Liubin
    Wang, Xuqin
    Jiang, Guofei
    Bai, Yutao
    Zhang, Lingyuan
    Qin, Peng
    BMC GENOMICS, 2025, 26 (01):
  • [50] Genome-Wide Identification and Expression Analysis of the G-Protein Gene Family in Barley Under Abiotic Stresses
    Han, Ailing
    Xu, Zhengyuan
    Cai, Zhenyu
    Zheng, Yuling
    Chen, Mingjiong
    Wu, Liyuan
    Shen, Qiufang
    PLANTS-BASEL, 2024, 13 (24):