COWVR/TEMPEST Multisensor Satellite-Based Surface State Parameter Retrievals

被引:0
|
作者
May, Jackie C. [1 ]
Rowley, Clark [1 ]
机构
[1] US Naval Res Lab, Stennis Space Ctr, Ocean Sci Div, Bay St Louis, MS 39529 USA
关键词
Ocean temperature; Sea surface; Brightness temperature; Satellite broadcasting; Temperature measurement; Surface treatment; Cloud computing; Temperature sensors; Atmospheric measurements; Surface states; Compact Ocean Wind Vector Radiometer (COWVR); Naval Research Laboratory Ocean Surface Flux System (NFLUX); satellite retrievals; surface air temperature; surface specific humidity; Temporal Experiment for Storms and Tropical Systems (TEMPEST); AIR-SEA INTERACTION; GLOBAL OCEAN; TEMPERATURE; HUMIDITY; MICROWAVE; SYSTEM;
D O I
10.1109/JSTARS.2024.3520429
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate estimates of essential climate variables, including ocean surface specific humidity (q(a)) and air temperature (T-a), at the air-sea interface are critical in understanding many atmospheric and oceanic processes and impacts and can be used to inform data-assimilative forecast systems about the coupled atmosphere-ocean state. To aid in addressing this scientific community need, the data processing component of the Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) uses multiple polynomial regression algorithms to produce single-sensor satellite-based swath-level estimates of surface state parameters and heat fluxes over the global ocean. This study extends the current NFLUX processing to include data processing from multiple sensors onboard the same platform. Specifically, we are combining satellite brightness temperature data from the Compact Ocean Wind Vector Radiometer (COWVR) and the Temporal Experiment for Storms and Tropical Systems (TEMPEST) to produce q(a) and T-a estimates. These combined surface estimates have error statistics comparable to current NFLUX satellite-based swath-level estimates from single sensors.
引用
收藏
页码:2444 / 2449
页数:6
相关论文
共 50 条
  • [21] Uncertainty Estimation in Vector Wind Retrievals from Satellite-based Polarimetric Microwave Radiometer Measurements
    Tong, Xiaolin
    Wang, Zhenzhan
    Li, Qingxia
    PIERS 2014 GUANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2014, : 537 - 540
  • [22] Development and validation of satellite-based estimates of surface visibility
    Brunner, J.
    Pierce, R. B.
    Lenzen, A.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (02) : 409 - 422
  • [23] Characterization of errors in vector wind retrievals from satellite-based polarimetric microwave radiometer measurements
    Laws, KE
    Lyzenga, DR
    Wiberg, DM
    Vesecky, JF
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) : 45 - 48
  • [24] Global Multisensor Automated satellite-based Snow and Ice Mapping System (GMASI) for cryosphere monitoring
    Romanov, Peter
    REMOTE SENSING OF ENVIRONMENT, 2017, 196 : 42 - 55
  • [25] Satellite-based estimates of Antarctic surface meltwater fluxes
    Trusel, Luke D.
    Frey, Karen E.
    Das, Sarah B.
    Munneke, Peter Kuipers
    van den Broeke, Michiel R.
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (23) : 6148 - 6153
  • [26] Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals
    Liu, Y. Y.
    Parinussa, R. M.
    Dorigo, W. A.
    De Jeu, R. A. M.
    Wagner, W.
    van Dijk, A. I. J. M.
    McCabe, M. F.
    Evans, J. P.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (02) : 425 - 436
  • [27] Global long-term passive microwave satellite-based retrievals of vegetation optical depth
    Liu, Yi Y.
    de Jeu, Richard A. M.
    McCabe, Matthew F.
    Evans, Jason P.
    van Dijk, Albert I. J. M.
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [28] Some Issues in Validating Satellite-Based Soil Moisture Retrievals from SMAP with in Situ Observations
    Jackson, Thomas J.
    Cosh, Michael
    Crow, Wade
    REMOTE SENSING OF THE TERRESTRIAL WATER CYCLE, 2015, 206 : 247 - 253
  • [29] Analysis on detection probability of satellite-based AIS affected by parameter estimation
    Zhu, Xiaofeng
    Wang, Wei
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS (AMEII 2016), 2016, 73 : 553 - 557
  • [30] Assessing the Impact of Light/Shallow Precipitation Retrievals from Satellite-Based Observations Using Surface Radar and Micro Rain Radar Observations
    Kidd, Chris
    Graham, Edward
    Smyth, Tim
    Gill, Michael
    REMOTE SENSING, 2021, 13 (09)