MP-KAN: An effective magnetic positioning algorithm based on Kolmogorov-Arnold network

被引:2
作者
Gao, Zibo [1 ]
Kong, Ming [1 ]
机构
[1] China Jiliang Univ, Coll Metrol & Measurement Engn, Hangzhou 310018, Peoples R China
关键词
Magnetic positioning; Machine learning; Deep learning; Regression forecasting; Neural network; Multilayer perceptron; Kolmogorov-Arnold network; LINEAR ALGORITHM; LOCALIZATION; ORIENTATION;
D O I
10.1016/j.measurement.2024.116248
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic Positioning (MP) technology represents a novel approach to locating spatial particles, notably medical capsules, wherein the inherently weak and susceptible-to-interference magnetic signals pose stringent demands on spatial positioning algorithms. Traditional methods are usually limited to polynomial fitting, which limits the generalization of the algorithm and the positioning accuracy of the near field part. In this paper, we introduce a magnetic positioning algorithm grounded in the Kolmogorov-Arnold network (MP-KAN), innovatively introduces the neural network method into the magnetic positioning system, providing a novel research idea for the positioning algorithm. Distinguishing from the learnable weight parameters inherent in the traditional model, the KAN network introduces a learnable activation function formulated through spline functions. This innovation enhances model accuracy by leveraging multiple spline curves and executing summation operations at nodes to facilitate regression predictions. Furthermore, the residual of the predicted position and the L1-parameter in the KAN layer and its entropy regularization are used as the prediction loss, and thresholds are strategically set at the network nodes to enhance the generalization ability of the model and obtain the optimal configuration. The proposed method achieves the goal of improving the positioning accuracy of the system while ensuring that the algorithm has a nearly constant positioning accuracy regardless of the distance between the target and the measurement system. The results of an experimental demonstrate that the maximum positioning error within the data set stands at 0.24 mm, the maximum relative error is 5.72 %, the minimum relative error is 0.25 %.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Artificial neural network analysis of the flow of nanofluids in a variable porous gap between two inclined cylinders for solar applications [J].
Alotaibi, Abdulaziz ;
Gul, Taza ;
Alotaibi, Ibrahim Mathker Saleh ;
Alghuried, Abdullah ;
Alshomrani, Ali Saleh ;
Alghuson, Moahd .
ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2024, 18 (01)
[2]   A CNN-LSTM Hybrid Model for Wrist Kinematics Estimation Using Surface Electromyography [J].
Bao, Tianzhe ;
Zaidi, Syed Ali Raza ;
Xie, Shengquan ;
Yang, Pengfei ;
Zhang, Zhi-Qiang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[3]   A Novel Artificial Neuron-Like Gas Sensor Constructed from CuS Quantum Dots/Bi2S3 Nanosheets [J].
Chen, Xinwei ;
Wang, Tao ;
Shi, Jia ;
Lv, Wen ;
Han, Yutong ;
Zeng, Min ;
Yang, Jianhua ;
Hu, Nantao ;
Su, Yanjie ;
Wei, Hao ;
Zhou, Zhihua ;
Yang, Zhi ;
Zhang, Yafei .
NANO-MICRO LETTERS, 2022, 14 (01)
[4]   Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network [J].
Cui, Yanqing ;
Liu, Haifeng ;
Wang, Qianlong ;
Zheng, Zunqing ;
Wang, Hu ;
Yue, Zongyu ;
Ming, Zhenyang ;
Wen, Mingsheng ;
Feng, Lei ;
Yao, Mingfa .
COMBUSTION AND FLAME, 2022, 237
[5]   Magnetic Localization Algorithm of Capsule Robot Based on BP Neural Network [J].
Fu, Qiang ;
Zhao, Dongdong ;
Shao, Lei ;
Zhang, Songyuan .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 :1-9
[6]   Improved Magnetic Positioning of Medical Capsule Robot [J].
Fu, Qiang ;
Fan, Chunliu ;
Wang, Chunjie ;
Zhang, Songyuan ;
Xi, Zhang .
IEEE SENSORS JOURNAL, 2023, 23 (15) :17391-17398
[7]   Diagnostic of the spectral properties of Aquila X-1 by Insight-HXMT snapshots during the early propeller phase [J].
Gungor, C. ;
Ge, M. Y. ;
Zhang, S. ;
Santangelo, A. ;
Zhang, S. N. ;
Lu, F. J. ;
Zhang, Y. ;
Chen, Y. P. ;
Tao, L. ;
Yang, Y. J. ;
Bu, Q. C. ;
Cai, C. ;
Cao, X. L. ;
Chang, Z. ;
Chen, G. ;
Chen, L. ;
Chen, T. X. ;
Chen, Y. ;
Chen, Y. B. ;
Cui, W. ;
Cui, W. W. ;
Deng, J. K. ;
Dong, Y. W. ;
Du, Y. Y. ;
Fu, M. X. ;
Gao, G. H. ;
Gao, H. ;
Gao, M. ;
Gu, Y. D. ;
Guan, J. ;
Guo, C. C. ;
Han, D. W. ;
Huang, Y. ;
Huo, J. ;
Ji, L. ;
Jia, S. M. ;
Jiang, L. H. ;
Jiang, W. C. ;
Jin, J. ;
Kong, L. D. ;
Li, B. ;
Li, C. K. ;
Li, G. ;
Li, M. S. ;
Li, T. P. ;
Li, W. ;
Li, X. ;
Li, X. B. ;
Li, X. F. ;
Li, Y. G. .
JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2020, 25 :10-16
[8]   Pose tracking method using magnetic excitations with frequency division for robotic endoscopic capsules [J].
Guo, Xudong ;
Li, Shengnan ;
Hao, Youguo ;
Luo, Zhongyu ;
Yan, Xiangci .
BIOMEDICAL MICRODEVICES, 2022, 24 (01)
[9]  
He Wei, 2023, 2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI), P446, DOI 10.1109/ICEMI59194.2023.10270466
[10]   A linear algorithm for tracing magnet position and orientation by using three-axis magnetic sensors [J].
Hu, Chao ;
Meng, Max Q. -H. ;
Mandal, Mrinal .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (12) :4096-4101