Citrus huanglongbing detection: A hyperspectral data-driven model integrating feature band selection with machine learning algorithms

被引:0
|
作者
Yan, Kangting [1 ,2 ]
Song, Xiaobing [4 ]
Yang, Jing [1 ,3 ]
Xiao, Junqi [1 ,3 ]
Xu, Xidan [1 ,3 ]
Guo, Jun [1 ,3 ]
Zhu, Hongyun [3 ]
Lan, Yubin [1 ,2 ]
Zhang, Yali [1 ,3 ]
机构
[1] Natl Ctr Int Collaborat Res Precis Agr Aviat Pesti, Guangzhou 510642, Peoples R China
[2] South China Agr Univ, Coll Elect Engn, Coll Artificial Intelligence, Guangzhou 510642, Peoples R China
[3] South China Agr Univ, Coll Engn, Guangzhou 510642, Peoples R China
[4] Inst Plant Protect, Guangdong Acad Agr Sci, Guangdong Prov Key Lab High Technol Plant Protect, Guangzhou 510640, Peoples R China
关键词
Hyperspectral technology; Citrus Huanglongbing; Machine learning; Feature band extraction; Rapid detection; REAL-TIME PCR; DISEASE; IDENTIFICATION; DIAGNOSIS; DYNAMICS; SPREAD; YELLOW;
D O I
10.1016/j.cropro.2024.107008
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This study explored rapid detection techniques for citrus Huanglongbing (HLB), a disease that severely impacts global citrus production. The method based on hyperspectral technology combined with machine learning algorithms provides new ideas for rapid HLB identification. Algorithm selection is crucial for processing efficiency and hyperspectral data interpretation. Hyperspectral data from healthy, mild HLB-infected, and macular (not related to HLB) citrus leaves were captured using a hyperspectrometer, with qPCR validation. Three preprocessing methods were selected to preprocess the spectral data. Competitive Adaptive Reweighted Sampling (CARS) and Successive Projections Algorithm (SPA) were used to extract feature bands from the hyperspectral data, and the range of the number of filtered feature bands as a percentage of the full band was 22.87%-28.31% and 3.27%-4.17%, respectively. Five distinct algorithms were then employed to construct classification models. Upon evaluation, the SPA-STD-SVM algorithm combination proved most effective, boasting a 97.46% accuracy and a 98.55% recall rate. The results demonstrate that suitable machine learning algorithms can effectively classify the hyperspectral data of citrus leaves in three different states: healthy, mild HLB-infected, and macular. This provides an effective approach for using hyperspectral data to differentiate citrus Huanglongbing.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Water quality prediction: A data-driven approach exploiting advanced machine learning algorithms with data augmentation
    Karthick, K.
    Krishnan, S.
    Manikandan, R.
    JOURNAL OF WATER AND CLIMATE CHANGE, 2024, 15 (02) : 431 - 452
  • [32] A Combined Data-Driven and Model-Based Residual Selection Algorithm for Fault Detection and Isolation
    Jung, Daniel
    Sundstrom, Christofer
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (02) : 616 - 630
  • [33] Development of a data-driven three-dimensional PM2.5 forecast model based on machine learning algorithms
    Han, Zizhen
    Guan, Tianyi
    Wang, Xinfeng
    Xin, Xin
    Song, Xiaomeng
    Wang, Yidan
    Dong, Can
    Ren, Pengjie
    Chen, Zhumin
    Ren, Shilong
    Zhang, Qingzhu
    Wang, Qiao
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2025, 37
  • [34] Data-driven rapid detection of Helicobacter pylori infection through machine learning with limited laboratory parameters in Chinese primary clinics
    Zhu, Shiben
    Tan, Xinyi
    Huang, He
    Zhou, Yi
    Liu, Yang
    HELIYON, 2024, 10 (15)
  • [35] Leveraging machine learning and feature engineering for optimal data-driven scaling decision in serverless computing
    Daraghmeh, Mustafa
    Jararweh, Yaser
    Agarwal, Anjali
    SIMULATION MODELLING PRACTICE AND THEORY, 2025, 140
  • [36] Data-Driven Exhaust Gas Temperature Baseline Predictions for Aeroengine Based on Machine Learning Algorithms
    Wang, Zepeng
    Zhao, Yongjun
    AEROSPACE, 2023, 10 (01)
  • [37] Adapting Data-Driven Techniques to Improve Surrogate Machine Learning Model Performance
    Jones, Huw Rhys
    Popescu, Andrei C.
    Sulehman, Yusuf
    Mu, Tingting
    IEEE ACCESS, 2023, 11 : 23909 - 23925
  • [38] On the Generalization Capability of a Data-Driven Turbulence Model by Field Inversion and Machine Learning
    Nishi, Yasunari
    Krumbein, Andreas
    Knopp, Tobias
    Probst, Axel
    Grabe, Cornelia
    AEROSPACE, 2024, 11 (07)
  • [39] A data-driven energy performance gap prediction model using machine learning
    Yilmaz, Derya
    Tanyer, Ali Murat
    Toker, Irem Dikmen
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 181
  • [40] An Intelligent Data-Driven Approach for Electrical Energy Load Management Using Machine Learning Algorithms
    Akhtar, Shamim
    Bin Sujod, Muhamad Zahim
    Rizvi, Syed Sajjad Hussain
    ENERGIES, 2022, 15 (15)