Pomegranate peel polyphenols improves diet-induced obesity and promotes adipose browning development through gut microbiota in mice

被引:0
作者
Luo, Zhuoting [1 ,2 ]
Song, Xiaoyu [1 ,2 ]
Li, Mengting [1 ,2 ]
Li, Jianke [1 ,2 ]
Hou, Chen [1 ,2 ]
机构
[1] Shaanxi Normal Univ, Coll Food Engn & Nutr Sci, Xian 710119, Peoples R China
[2] Shaanxi Normal Univ, Univ Key Lab Food Proc Byprod Adv Dev & High Value, Xian 710119, Peoples R China
关键词
Pomegranate peel polyphenols; Obesity; Gut microbiota; High-fat diet; Adipose browning; INSULIN-RESISTANCE; AKKERMANSIA-MUCINIPHILA; ENERGY-EXPENDITURE; BILE-ACIDS; TISSUE; EXTRACT; METABOLISM; ADIPOGENESIS; ACCUMULATION; INFLAMMATION;
D O I
10.26599/FSHW.2024.9250038
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Gut microbiota regulate the activation of adipose browning, which promote energy dissipation and combat diet-induced obesity. Pomegranate peel polyphenols (PPPs) have been shown to reduce obesity, regulate lipid metabolism in adipose tissue, and modulate the composition of gut microbiota in animal fed high-fat diet (HFD). However, the role of gut microbiota in the improvement of obesity by PPPs has not been elucidated. In current study, we applied antibiotics to inhibit gut microbiota in mice fed HFD and treated with PPPs. The results showed that the inhibition of gut microbiota impair the effect of PPPs on reducing obesity and promoting adipose browning, and change the fecal metabolomic profiles in respond to PPPs. Moreover, the inhibition of gut microbiota supressed the promotive effects of PPPs on the levels of Akkermansia and microbiota-related metabolites, such as urolithin A, short-chain fatty acids (SCFAs), and bile acids (BAs), which were associated with activating adipose browning. Therefore, our results suggested that the presence of gut microbiota is essential for PPPs to ameliorate HFD-induced obesity. The related bacteria or metabolites generated by the interaction between PPPs and microbiota promote adipose browning and facilitate the beneficial effects of PPPs. (c) 2025 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:12
相关论文
共 53 条
[1]   A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice [J].
Anhe, Fernando F. ;
Roy, Denis ;
Pilon, Genevieve ;
Dudonne, Stephanie ;
Matamoros, Sebastien ;
Varin, Thibault V. ;
Garofalo, Carole ;
Moine, Quentin ;
Desjardins, Yves ;
Levy, Emile ;
Marette, Andre .
GUT, 2015, 64 (06) :872-883
[2]  
Aviram M, 2000, AM J CLIN NUTR, V71, P1062
[3]   Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites [J].
Bai, Xiaowu ;
Wei, Hong ;
Liu, Weixin ;
Coker, Olabisi Oluwabukola ;
Gou, Hongyan ;
Liu, Changan ;
Zhao, Liuyang ;
Li, Chuangen ;
Zhou, Yunfei ;
Wang, Guoping ;
Kang, Wei ;
Ng, Enders Kwok-wai ;
Yu, Jun .
GUT, 2022, 71 (12) :2439-2450
[4]   Obesity: global epidemiology and pathogenesis [J].
Blueher, Matthias .
NATURE REVIEWS ENDOCRINOLOGY, 2019, 15 (05) :288-298
[5]   Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice [J].
Cani, Patrice D. ;
Bibiloni, Rodrigo ;
Knauf, Claude ;
Neyrinck, Audrey M. ;
Neyrinck, Audrey M. ;
Delzenne, Nathalle M. ;
Burcelin, Remy .
DIABETES, 2008, 57 (06) :1470-1481
[6]   Dietary plants, gut microbiota, and obesity: Effects and mechanisms [J].
Cao, Shi-Yu ;
Zhao, Cai-Ning ;
Xu, Xiao-Yu ;
Tang, Guo-Yi ;
Corke, Harold ;
Gan, Ren-You ;
Li, Hua-Bin .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2019, 92 :194-204
[7]  
Casanova-Martí A, 2018, FOOD FUNCT, V9, P1672, DOI [10.1039/c7fo02028g, 10.1039/C7FO02028G]
[8]   Gut Microbiota Orchestrates Energy Homeostasis during Cold [J].
Chevalier, Claire ;
Stojanovic, Ozren ;
Colin, Didier J. ;
Suarez-Zamorano, Nicolas ;
Tarallo, Valentina ;
Veyrat-Durebex, Christelle ;
Rigo, Dorothee ;
Fabbiano, Salvatore ;
Stevanovic, Ana ;
Hagemann, Stefanie ;
Montet, Xavier ;
Seimbille, Yann ;
Zamboni, Nicola ;
Hapfelmeier, Siegfried ;
Trajkovski, Mirko .
CELL, 2015, 163 (06) :1360-1374
[9]   Activation of Human Brown Adipose Tissue by a β3-Adrenergic Receptor Agonist [J].
Cypess, Aaron M. ;
Weiner, Lauren S. ;
Roberts-Toler, Carla ;
Elia, Elisa Franquet ;
Kessler, Skyler H. ;
Kahn, Peter A. ;
English, Jeffrey ;
Chatman, Kelly ;
Trauger, Sunia A. ;
Doria, Alessandro ;
Kolodny, Gerald M. .
CELL METABOLISM, 2015, 21 (01) :33-38
[10]   Kinetics of butyrate metabolism in the normal colon and in ulcerative colitis: the effects of substrate concentration and carnitine on the β-oxidation pathway [J].
De Preter, V. ;
Geboes, K. P. ;
Bulteel, V. ;
Vandermeulen, G. ;
Suenaert, P. ;
Rutgeerts, P. ;
Verbeke, K. .
ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2011, 34 (05) :526-532