Exploring the Promoter Generation and Prediction of Halomonas spp. Based on GAN and Multi-Model Fusion Methods

被引:0
|
作者
Zhao, Cuihuan [1 ]
Guan, Yuying [1 ]
Yan, Shuan [2 ]
Li, Jiahang [3 ]
机构
[1] Tsinghua Univ, Sch Life Sci, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Publ Safety Res, Dept Engn Phys, Beijing 100084, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
关键词
<italic>Halomonas</italic>; promoters; generative adversarial networks (GANs); multi-model fusion; quantile hit rate; SEQUENCE; STRENGTH; SIMILARITY; EXPRESSION;
D O I
10.3390/ijms252313137
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Promoters, as core elements in the regulation of gene expression, play a pivotal role in genetic engineering and synthetic biology. The accurate prediction and optimization of promoter strength are essential for advancing these fields. Here, we present the first promoter strength database tailored to Halomonas, an extremophilic microorganism, and propose a novel promoter design and prediction method based on generative adversarial networks (GANs) and multi-model fusion. The GAN model effectively learns the key features of Halomonas promoter sequences, such as the GC content and Moran's coefficients, to generate biologically plausible promoter sequences. To enhance prediction accuracy, we developed a multi-model fusion framework integrating deep learning and machine learning approaches. Deep learning models, incorporating BiLSTM and CNN architectures, capture k-mer and PSSM features, whereas machine learning models utilize engineered string and non-string features to construct comprehensive feature matrices for the multidimensional analysis and prediction of promoter strength. Using the proposed framework, newly generated promoters via mutation were predicted, and their functional validity was experimentally confirmed. The integration of multiple models significantly reduced the experimental validation space through an intersection-based strategy, achieving a notable improvement in top quantile prediction accuracy, particularly within the top five quantiles. The robustness and applicability of this model were further validated on diverse datasets, including test sets and out-of-sample promoters. This study not only introduces an innovative approach for promoter design and prediction in Halomonas but also lays a foundation for advancing industrial biotechnology. Additionally, the proposed strategy of GAN-based generation coupled with multi-model prediction demonstrates versatility, offering a valuable reference for promoter design and strength prediction in other extremophiles. Our findings highlight the promising synergy between artificial intelligence and synthetic biology, underscoring their profound academic and practical implications.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Prediction of loan default based on multi-model fusion
    Li, Xingyun
    Ergu, Daji
    Zhang, Di
    Qiu, Dafeng
    Cai, Ying
    Ma, Bo
    8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 757 - 764
  • [2] MULTI-MODEL FUSION PHOTOVOLTAIC POWER GENERATION PREDICTION METHOD BASED ON REINFORCEMENT LEARNING
    Wang J.
    Fu J.
    Chen B.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 382 - 388
  • [3] Research on Photovoltaic Power Prediction Based on Multi-model Fusion
    Chen, Jiaqi
    Gao, Qiang
    Ji, Yuehui
    Xu, Zhao
    Liu, Junjie
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 59 - 67
  • [4] Navigation Trajectory Prediction Method of Inland Ships Based on Multi-model Fusion
    Zhang Y.
    Gao S.
    He W.
    Cai J.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2022, 33 (10): : 1142 - 1152
  • [5] Air quality PM2.5 prediction based on multi-model fusion
    Zhang, Bo
    Li, Xiaoli
    Zhao, Yanling
    Li, Yang
    Wang, Xinjian
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 4426 - 4431
  • [6] Ship energy consumption prediction: Multi-model fusion methods and multi-dimensional performance evaluation
    Hu, Zhihui
    Fan, Ailong
    Mao, Wengang
    Shu, Yaqing
    Wang, Yifu
    Xia, Minjie
    Yi, Qiuyu
    Li, Bin
    OCEAN ENGINEERING, 2025, 322
  • [7] Tropical Cyclone prediction based on multi-model fusion across Indian coastal region
    Varalakshmi, P.
    Vasumathi, N.
    Venkatesan, R.
    PROGRESS IN OCEANOGRAPHY, 2021, 193
  • [8] Temperature Prediction for Stored Grain: A Multi-model Fusion Approach Based on Machine Learning
    Chen, Donghao
    Liu, Binkun
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 661 - 665
  • [9] Multi-model adaptive fusion-based graph network for Alzheimer?s disease prediction
    Yang, Fusheng
    Wang, Huabin
    Wei, Shicheng
    Sun, Guangming
    Chen, Yonglin
    Tao, Liang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
  • [10] User Intention Prediction Method Based on Hybrid Feature Selection and Stacking Multi-model Fusion
    Xu, Zhongxian
    Sun, Yuejia
    Guo, Ye
    Zhou, Zhihong
    Cheng, Yinchao
    Lin, Lin
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING, ICECE, 2022, : 220 - 226