EFFICIENCY IN LOCAL DIFFERENTIAL PRIVACY

被引:0
作者
Steinberger, Lukas [1 ]
机构
[1] Univ Vienna, Dept Stat & OR, Vienna, Austria
基金
奥地利科学基金会;
关键词
Local differential privacy; efficiency; Fisher information; local asymptotic mixed normality;
D O I
10.1214/24-AOS2425
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a theory of asymptotic efficiency in regular parametric models when data confidentiality is ensured by local differential privacy (LDP). Even though efficient parameter estimation is a classical and well-studied problem in mathematical statistics, it leads to several nontrivial obstacles that need to be tackled when dealing with the LDP case. Starting from a regular parametric model P = (P theta)theta E Theta, Theta C Rp, for the i.i.d. unobserved sensitive data X 1 , ...,Xn, we establish local asymptotic mixed normality (along subsequences) of the model Q(n)P= (Q(n)P n ) theta theta E Theta generating the sanitized observations Z1,... , Z n , where Q (n) is an arbitrary sequence of sequentially interactive privacy mechanisms. This result readily implies convolution and local asymptotic minimax theorems. In case p = 1, the optimal asymptotic variance is found to be the inverse of the supremal Fisher information supQEQ alpha I theta(QP) E R, where the supremum runs over all alpha-differentially private (marginal) Markov kernels. We present an algorithm for finding a (nearly) optimal privacy mechanism Q and an estimator theta n(Z1, ..., Zn) based on the corresponding sanitized data that achieves this asymptotically optimal variance.
引用
收藏
页码:2139 / 2166
页数:28
相关论文
共 33 条
[11]   Multivariate Mean Comparison Under Differential Privacy [J].
Dunsche, Martin ;
Kutta, Tim ;
Dette, Holger .
PRIVACY IN STATISTICAL DATABASES, PSD 2022, 2022, 13463 :31-45
[12]  
Dwork C, 2004, LECT NOTES COMPUT SC, V3152, P528
[13]   Differential privacy: A survey of results [J].
Dwork, Cynthia .
THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2008, 4978 :1-19
[14]   Calibrating noise to sensitivity in private data analysis [J].
Dwork, Cynthia ;
McSherry, Frank ;
Nissim, Kobbi ;
Smith, Adam .
THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2006, 3876 :265-284
[15]  
EVFIMIEVSKI A., 2003, P 22 ACM SIGMOD SIGA, P211
[16]   A CHARACTERIZATION OF LIMITING DISTRIBUTIONS OF REGULAR ESTIMATES [J].
HAJEK, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 14 (04) :323-&
[17]   MARTINGALE INVARIANCE PRINCIPLES [J].
HALL, P .
ANNALS OF PROBABILITY, 1977, 5 (06) :875-887
[18]  
HOPFNER R., 2014, Asymptotic Statistics: With a View to Stochastic Processes, DOI [10.1515/9783110250282, DOI 10.1515/9783110250282]
[19]  
HUCKE U., 2019, Local differential privacy and estimation in the binomial model
[20]  
JEGANATHAN P., 1980, Asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal