Neoarchean-Paleoproterozoic metallogenesis associated with plate tectonics in early Earth: Insights from the North China Craton

被引:0
|
作者
Zeng, Tao [1 ]
Tang, Li [1 ]
Santosh, M. [1 ,2 ,3 ]
Wang, Hanhui [1 ]
机构
[1] China Univ Geosci Beijing, Frontiers Sci Ctr Deep Time Digital Earth, Sch Earth Sci & Resources, 29 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Kochi Univ, Fac Sci, Kochi 8608520, Japan
[3] Yonsei Univ, Yonsei Frontier Lab, Seoul, South Korea
关键词
North China Craton; Neoarchean to Paleoproterozoic; metallogenesis; Tectonic evolution; Redox state change; Early plate tectonics; BANDED IRON-FORMATION; ZIRCON U-PB; ANSHAN-BENXI AREA; EASTERN HEBEI PROVINCE; ZHONGTIAOSHAN REGION EVIDENCE; GRANITE-GREENSTONE TERRANE; WESTERN SHANDONG PROVINCE; TONGKUANGYU CU DEPOSIT; MID-ATLANTIC RIDGE; CRUSTAL GROWTH;
D O I
10.1016/j.gsf.2024.101990
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Precambrian cratons are archives of several precious metallic deposits that significantly contribute to our planet's resources and habitability and also provide key information on plate tectonics on Earth. The North China Craton (NCC) preserves important records of Neoarchean to Paleoproterozoic tectonic processes and associated episodes of metallogenic pulses that generated five major types of mineral deposits including banded iron formations (BIFs), volcanogenic massive sulfide (VMS) Cu-Pb-Zn deposits, orogenic Au deposits, magmatic sulfide Cu-Ni deposits and porphyry Cu deposits. These deposits are distributed in Neoarchean granite-greenstone belts and Paleoproterozoic orogenic belts, and show dominant mineralization ages of 2.6-2.5 Ga and two subordinate age groups of 2.7-2.6 Ga and 2.3- 1.95 Ga. The Neoarchean metallogenic events generated BIFs, VMSs, Au and magmatic sulfide Cu-Ni deposits and the tectonic framework correlates with the microblock amalgamation and plate subduction possibly also aided by mantle plumes. The BIFs representing the dominant mineral deposits in Neoarchean are mainly Algoma-type with few examples of Superior-type. Meta-basaltic rocks associated with the Algoma-type BIF deposits in the granite-greenstone belts of the NCC display highly variable trace element compositions and LREE-depleted and LREE-enriched. The REE distribution patterns and high field-strength element characteristics of meta-basaltic rocks suggest the formation of BIF and VMS deposits in mid-ocean ridge, island arc and back-arc settings. The formation of VMS, Au and magmatic Cu-Ni deposits correspond to plate subduction and collision in a convergent continental margin setting during the late Neoarchean. The Paleoproterozoic deposits are represented by BIFs and porphyry Cu deposits. The Paleoproterozoic BIFs and meta-basaltic rocks correspond to magmatic-hydrothermal activities in passive continental margin or island arc settings, whereas the porphyry Cu deposits were formed in an extensional environment, corresponding to the Paleoproterozoic subduction-rifting events in the Trans-North China Orogen. The variation of d56Fe, Ce anomalies and Y/Ho ratios in BIFs from Neoarchean to Paleoproterozoic indicate the initial increase of oxygen in late Neoarchean and the change of ambient marine environment from anoxic to oxic during the Great Oxidation Event. The multi-stage Neoarchean to Paleoproterozoic metallogenic systems of the NCC were intrinsically linked to the plate subduction along with arc-plume interaction and rifting-subduction-collision activities. The contemporaneous increasing in weathering of exposed continental crust due to plate subduction potentially controlled the atmosphere-hydrosphere oxidation state and formation of BIF deposits in the NCC. (c) 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Featured Neoarchean granitoid association in the central North China Craton: An indicator of warm plate subduction
    Sun, Guozheng
    Hu, Yalu
    Liu, Shuwen
    Li, Sanzhong
    Fu, Jinghao
    Gao, Lei
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2023, 135 (1-2) : 295 - 309
  • [42] Building the Wutai arc: Insights into the Archean - Paleoproterozoic crustal evolution of the North China Craton
    Gao, Pin
    Santosh, M.
    PRECAMBRIAN RESEARCH, 2019, 333
  • [43] Two phases of granulite facies metamorphism during the Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: Records from mafic granulites
    Yang, Chuan
    Wei, Chunjing
    PRECAMBRIAN RESEARCH, 2017, 301 : 49 - 64
  • [44] The Neoarchean-Paleoproterozoic basin development and growth of the Singhbhum Craton, eastern India and its global implications: Insights from detrital zircon U-Pb data
    Das, Kaushik
    Bose, Sankar
    Ghosh, Gautam
    PRECAMBRIAN RESEARCH, 2017, 298 : 123 - 145
  • [45] Hadean to Neoarchean episodic crustal growth: Detrital zircon records in Paleoproterozoic quartzites from the southern North China Craton
    Zhang, Hong-Fu
    Wang, Jing-Li
    Zhou, Ding-Wu
    Yang, Yue-Heng
    Zhang, Guo-Wei
    Santosh, M.
    Yu, Hong
    Zhang, Juan
    PRECAMBRIAN RESEARCH, 2014, 254 : 245 - 257
  • [46] Crustal growth and reworking of the eastern North China Craton: Constraints from the age and geochemistry of the Neoarchean Taishan TTG gneisses
    Chen, Ying
    Zhang, Jian
    Liu, Jin
    Han, Yigui
    Yin, Changqing
    Qian, Jiahui
    Liu, Xiaoguang
    PRECAMBRIAN RESEARCH, 2020, 343
  • [47] Geochronological and geochemical studies on the granitoid gneisses in the northeastern North China Craton: Insights into the late Neoarchean magmatism and crustal evolution
    Shan, Houxiang
    Zhai, Mingguo
    Dey, Sukanta
    Lu, Xiaoping
    PRECAMBRIAN RESEARCH, 2019, 320 : 371 - 390
  • [48] Petrological and geochemical insights into the genesis and geothermal potential of Late Neoarchean granitoid rocks in the Matouying Uplift, North China Craton
    Gan, Quan
    Song, Luming
    Shangguan, Shuantong
    Qi, Xiaofei
    Liao, Zhiwei
    Chen, Jianye
    Yang, Zhili
    Wang, Guiling
    Xin, Guangyao
    Zhang, Chongyuan
    PRECAMBRIAN RESEARCH, 2025, 421
  • [49] Petrogenesis and geochronology of Precambrian granitoid gneisses in Western Liaoning Province: Constraints on Neoarchean to early Paleoproterozoic crustal evolution of the North China Craton
    Wang, Wei
    Liu, Shuwen
    Wilde, Simon A.
    Li, Qiugen
    Zhang, Jian
    Bai, Xiang
    Yang, Pengtao
    Guo, Rongrong
    PRECAMBRIAN RESEARCH, 2012, 222 : 290 - 311
  • [50] Early Neoarchean (∼2.7 Ga) tectono-thermal events in the North China Craton: A synthesis
    Wan, Yusheng
    Xie, Shiwen
    Yang, Chonghui
    Kroner, Alfred
    Ma, Mingzhu
    Dong, Chunyan
    Du, Lilin
    Xie, Hangqiang
    Liu, Dunyi
    PRECAMBRIAN RESEARCH, 2014, 247 : 45 - 63