Multiple solutions for a class of Kirchhoff-type equation with critical growth

被引:0
作者
Ye, Yiwei [1 ]
Liu, Shan [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
关键词
Kirchhoff-type problem; critical growth; variational method; POSITIVE SOLUTIONS; EXISTENCE; STATES;
D O I
10.14232/ejqtde.2025.1.7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the multiplicity of solutions to a class of Kirchhoff- type equation with critical growth - ( a + b integral(3)(R) |del u|(2)dx ) Delta u + V(x)u = lambda h(x) f (u) + g(x)u(5) in R-3, where a, b > 0, lambda is a positive parameter and f is a continuous nonlinearity with subcritical growth. Under suitable conditions on the potentials V(x), h(x) and g(x), we prove the multiplicity results and investigate the relation between the number of solutions with the topology of the set where g attains its maximum value for small values of the parameter lambda. The proofs are based on Nehari manifold and Lusternik-Schnirelmann theory.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 31 条
[1]  
Adachi S, 2000, CALC VAR PARTIAL DIF, V11, P63, DOI 10.1007/s005260050003
[2]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[3]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[4]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]   Multiple positive solutions for a class of Kirchhoff equation on bounded domain [J].
Cai, Li ;
Zhang, Fubao .
APPLICABLE ANALYSIS, 2022, 101 (15) :5273-5288
[7]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[8]  
Fan HN, 2016, Z ANGEW MATH PHYS, V67, DOI 10.1007/s00033-016-0723-2
[9]   Existence and concentration of ground states for Schrodinger-Poisson equations with critical growth [J].
He, Xiaoming ;
Zou, Wenming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
[10]  
Kirchhoff G., 1883, Vorlesungen uber Mathematische Physik, V1