Stochastic Finite-Time Synchronization of Kuramoto-Oscillator Networks

被引:0
作者
Liu, Mingqi [1 ]
Wu, Jie [1 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Peoples R China
来源
2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC | 2022年
基金
中国国家自然科学基金;
关键词
Synchronization; Kuramoto model; finite-time; noise; EXPONENTIAL SYNCHRONIZATION; STABILITY; DYNAMICS;
D O I
10.1109/CCDC55256.2022.10033836
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of stochastic finite-time(SFT) phase agreement(PA) and frequency synchronization(FS) of Kuramoto model with identical and non-identical oscillators, respectively. The effect of stochastic noisy perturbation on the process of finite-time convergence is investigated due to its ubiquity. Furthermore, this investigation picks the smooth control protocol, which does not contain the signum function anymore. By utilizing the finite-time stochastic stability theory, several criteria are derived successively for ensuring the SFT PA and FS of Kuramoto model, and the upper bound time estimation(UBTE) of synchronization is given. Finally, simulation results not only validate the correction of theoretical analysis, but also indicate that PA is more robust to stochastic disturbance, whereas FS of Kuramoto-oscillator networks is relatively sensitive.
引用
收藏
页码:3756 / 3762
页数:7
相关论文
共 37 条
[1]   A mathematical model for the dynamics of clustering [J].
Aeyels, Dirk ;
De Smet, Filip .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (19) :2517-2530
[2]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[3]   Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization [J].
Boccaletti, S. ;
Almendral, J. A. ;
Guan, S. ;
Leyva, I. ;
Liu, Z. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zou, Y. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 660 :1-94
[4]   On Exponential Synchronization of Kuramoto Oscillators [J].
Chopra, Nikhil ;
Spong, Mark W. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) :353-357
[5]   Synchronization in complex networks of phase oscillators: A survey [J].
Doerfler, Florian ;
Bullo, Francesco .
AUTOMATICA, 2014, 50 (06) :1539-1564
[6]   Finite-time synchronization of Kuramoto-type oscillators [J].
Dong, Jiu-Gang ;
Xue, Xiaoping .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 26 :133-149
[7]   Explosive Synchronization Transitions in Scale-Free Networks [J].
Gomez-Gardenes, Jesus ;
Gomez, Sergio ;
Arenas, Alex ;
Moreno, Yamir .
PHYSICAL REVIEW LETTERS, 2011, 106 (12)
[8]   Finite-size effects in a stochastic Kuramoto model [J].
Gottwald, Georg A. .
CHAOS, 2017, 27 (10)
[9]  
Khalil H. K., 2002, Nonlinear Systems, VThird
[10]  
KURAMOTO Y, 1984, SUP PROG THEOR PHYS, P223