Conveyor-belt magneto-optical trapping of molecules

被引:0
|
作者
Li, Grace K. [1 ,2 ]
Hallas, Christian [1 ,2 ]
Doyle, John M. [1 ,2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard MIT Ctr Ultracold Atoms, Cambridge, MA 02138 USA
来源
NEW JOURNAL OF PHYSICS | 2025年 / 27卷 / 04期
关键词
atomic physics; molecular physics; laser cooling; magneto-optical trapping; ultracold molecules; QUANTUM; GAS;
D O I
10.1088/1367-2630/adc032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Laser cooling is used to produce ultracold atoms and molecules for quantum science and precision measurement applications. Molecules are more challenging to cool than atoms due to their vibrational and rotational internal degrees of freedom. Molecular rotations lead to the use of type-II transitions ( F >= F ') for magneto-optical trapping (MOT). When typical red detuned light frequencies are applied to these transitions, sub-Doppler heating is induced, resulting in higher temperatures and larger molecular cloud sizes than realized with the type-I MOTs most often used with atoms. To improve type-II MOTs, Jarvis et al (2018 Phys. Rev. Lett. 120 083201) proposed a blue-detuned MOT to be applied after initial cooling and capture with a red-detuned MOT. This was successfully implemented (Burau et al 2023 Phys. Rev. Lett. 130 193401; Jorapur et al 2024 Phys. Rev. Lett. 132 163403; Li et al 2024 Phys. Rev. Lett. 132 233402), realizing colder and denser molecular samples. Very recently, Hallas et al (2024 arXiv:2404.03636) demonstrated a blue-detuned MOT with a '1+2' configuration that resulted in even stronger compression of the molecular cloud. Here, we describe and characterize theoretically the conveyor-belt mechanism that underlies this observed enhanced compression. We perform numerical simulations of the conveyor-belt mechanism using both stochastic Schr & ouml;dinger equation and optical Bloch equation approaches. We investigate the conveyor-belt MOT characteristics in relation to laser parameters, g-factors and the structure of the molecule, and find that conveyor-belt trapping should be applicable to a wide range of laser-coolable molecules.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Improved magneto-optical trapping of a diatomic molecule
    McCarron, D. J.
    Norrgard, E. B.
    Steinecker, M. H.
    DeMille, D.
    NEW JOURNAL OF PHYSICS, 2015, 17 : 1 - 12
  • [32] Magneto-optical Trap for Polar Molecules
    Stuhl, Benjamin K.
    Sawyer, Brian C.
    Wang, Dajun
    Ye, Jun
    PHYSICAL REVIEW LETTERS, 2008, 101 (24)
  • [33] Characteristics of a magneto-optical trap of molecules
    Williams, H. J.
    Truppe, S.
    Hambach, M.
    Caldwell, L.
    Fitch, N. J.
    Hinds, E. A.
    Sauer, B. E.
    Tarbutt, M. R.
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [34] 2 TESTS OF CONVEYOR-BELT MODEL FOR ITEM RECOGNITION
    MURDOCK, B
    HOCKLEY, W
    MUTER, P
    CANADIAN JOURNAL OF PSYCHOLOGY-REVUE CANADIENNE DE PSYCHOLOGIE, 1977, 31 (02): : 71 - 89
  • [35] AN ANTI-JAMMING DEVICE FOR CONVEYOR-BELT SYSTEMS
    IOANNIDE.A
    MACMILLA.CG
    POST OFFICE ELECTRICAL ENGINEERS JOURNAL, 1970, 63 (OCT): : 189 - &
  • [36] Bottlenecks in continuous hops drying with conveyor-belt dryer
    Ziegler, Thomas
    Jubaer, Hasan
    Teodorov, Teodor
    DRYING TECHNOLOGY, 2022, 40 (13) : 2598 - 2616
  • [37] Design and operational performance of conveyor-belt drying structures
    Kiranoudis, CT
    CHEMICAL ENGINEERING JOURNAL, 1998, 69 (01) : 27 - 38
  • [38] Simultaneous magneto-optical trapping of lithium and ytterbium atoms towards production of ultracold polar molecules
    Okano, M.
    Hara, H.
    Muramatsu, M.
    Doi, K.
    Uetake, S.
    Takasu, Y.
    Takahashi, Y.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 98 (04): : 691 - 696
  • [39] Three-dimensional modeling of magneto-optical trapping of MgF molecules with multilevel rate equations
    Xu, Supeng
    Xia, Meng
    Gu, Ruoxi
    Yin, Yanning
    Xu, Liang
    Xia, Yong
    Yin, Jianping
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [40] Simultaneous magneto-optical trapping of lithium and ytterbium atoms towards production of ultracold polar molecules
    M. Okano
    H. Hara
    M. Muramatsu
    K. Doi
    S. Uetake
    Y. Takasu
    Y. Takahashi
    Applied Physics B, 2010, 98 : 691 - 696