Deciphering the Oncogenic Landscape of Hepatocytes Through Integrated Single-Nucleus and Bulk RNA-Seq of Hepatocellular Carcinoma

被引:0
|
作者
Su, Huanhou [1 ,2 ,3 ,4 ]
Zhou, Xuewen [1 ,2 ,3 ,4 ]
Lin, Guanchuan [1 ,2 ]
Luo, Chaochao [1 ,2 ,5 ]
Meng, Wei [1 ,2 ]
Lv, Cui [6 ]
Chen, Yuting [1 ,2 ]
Wen, Zebin [1 ,2 ]
Li, Xu [1 ,2 ]
Wu, Yongzhang [1 ,2 ]
Xiao, Changtai [1 ,2 ]
Yang, Jian [7 ,8 ]
Lu, Jiameng [3 ,4 ]
Luo, Xingguang [9 ]
Chen, Yan [3 ,4 ]
Tam, Paul K. H. [3 ,4 ]
Li, Chuanjiang [10 ]
Sun, Haitao [6 ]
Pan, Xinghua [1 ,2 ,3 ,4 ,11 ]
机构
[1] Southern Med Univ, Sch Basic Med Sci, Dept Biochem & Mol Biol, Guangzhou 510515, Peoples R China
[2] Guangdong Prov Key Lab Single Cell Technol & Appli, Guangzhou 510515, Peoples R China
[3] Macau Univ Sci & Technol, Precis Regenerat Med Res Ctr, Med Sci Div, Macau 999078, Peoples R China
[4] Macau Univ Sci & Technol, State Key Lab Qual Res Chinese Med, Macau 999078, Peoples R China
[5] Shihezi Univ, Coll Life Sci, Shihezi 832003, Xinjiang, Peoples R China
[6] Southern Med Univ, Zhujiang Hosp, Guangdong Prov Clin Res Ctr Lab Med, Clin Biobank Ctr,Microbiome Med Ctr, Guangzhou 510280, Peoples R China
[7] Southern Med Univ, Zhujiang Hosp, Gen Surg Ctr, Dept Hepatobiliary Surg 1, Guangzhou 510280, Peoples R China
[8] Southern Med Univ, Zhujiang Hosp, Guangdong Prov Clin & Engn Ctr Digital Med, Guangzhou 510280, Peoples R China
[9] Yale Univ, Sch Med, Dept Psychiat, New Haven, CT 06510 USA
[10] Southern Med Univ, Nanfang Hosp, Dept Gen Surg, Div Hepatobiliopancreat Surg, Guangzhou 510515, Guangdong, Peoples R China
[11] Southern Med Univ, Key Lab Infect Dis Res South China, China Minist Educ, Guangzhou 510515, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
hepatocellular carcinoma classification; hepatocyte subtype; metabolic pathway; quantile distribution model; single-cell transcriptomics; EXPRESSION; METABOLISM; GENE; MODELS; PREDICTION; GROWTH; CELLS; IDENTIFICATION; RESISTANCE; DIAGNOSIS;
D O I
10.1002/advs.202412944
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality, while the hepatocyte mechanisms driving oncogenesis remains poorly understood. In this study, single-nucleus RNA sequencing of samples from 22 HCC patients revealed 10 distinct hepatocyte subtypes, including beneficial Hep0, predominantly malignant Hep2, and immunosuppressive Hep9. These subtypes were strongly associated with patient prognosis, confirmed in TCGA-LIHC and Fudan HCC cohorts through hepatocyte composition deconvolution. A quantile-based scoring method is developed to integrate data from 29 public HCC datasets, creating a Quantile Distribution Model (QDM) with excellent diagnostic accuracy (Area Under the Curve, AUC = 0.968-0.982). QDM was employed to screen potential biomarkers, revealing that PDE7B functions as a key gene whose suppression promotes HCC progression. Guided by the genes specific to Hep0/2/9 subtypes, HCC is categorized into metabolic, inflammatory, and matrix classes, which are distinguishable in gene mutation frequencies, survival times, enriched pathways, and immune infiltration. Meanwhile, the sensitive drugs of the three HCC classes are identified, namely ouabain, teniposide, and TG-101348. This study presents the largest single-cell hepatocyte dataset to date, offering transformative insights into hepatocarcinogenesis and a comprehensive framework for advancing HCC diagnostics, prognostics, and personalized treatment strategies.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A conjoint analysis of bulk RNA-seq and single-nucleus RNA-seq for revealing the role of ferroptosis and iron metabolism in ALS
    Fu, Xiujuan
    He, Yizi
    Xie, Yongzhi
    Lu, Zuneng
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [2] Massively parallel single-nucleus RNA-seq with DroNc-seq
    Habib, Naomi
    Avraham-Davidi, Inbal
    Basu, Anindita
    Burks, Tyler
    Shekhar, Karthik
    Hofree, Matan
    Choudhury, Sourav R.
    Aguet, Francois
    Gelfand, Ellen
    Ardlie, Kristin
    Weitz, David A.
    Rozenblatt-Rosen, Orit
    Zhang, Feng
    Regev, Aviv
    NATURE METHODS, 2017, 14 (10) : 955 - +
  • [3] Massively parallel single-nucleus RNA-seq with DroNc-seq
    Naomi Habib
    Inbal Avraham-Davidi
    Anindita Basu
    Tyler Burks
    Karthik Shekhar
    Matan Hofree
    Sourav R Choudhury
    François Aguet
    Ellen Gelfand
    Kristin Ardlie
    David A Weitz
    Orit Rozenblatt-Rosen
    Feng Zhang
    Aviv Regev
    Nature Methods, 2017, 14 : 955 - 958
  • [4] Integrative analysis of single-nucleus RNA-seq and bulk RNA-seq reveals germline cells development dynamics and niches in the Pacific oyster gonad
    Wang, Huihui
    Yu, Hong
    Li, Qi
    ISCIENCE, 2024, 27 (04)
  • [5] Prognosis and therapeutic benefits prediction based on NK cell marker genes through single-cell RNA-seq with integrated bulk RNA-seq analysis for hepatocellular carcinoma
    Yang, Yao
    She, Shaopin
    Ren, Liying
    Zhao, Bigeng
    Chen, Dongbo
    Chen, Hongsong
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [7] Comparison of Nuclear Preparation for Single-Nucleus RNA-seq of Adipose Tissue
    Onogi, Yasuhiro
    Wada, Tsutomu
    Fujisaka, Shiho
    Sasaoka, Toshiyasu
    Iida, Keita
    Okada, Yukinori
    Kadowaki, Makoto
    Saito, Shigeru
    Tobe, Kazuyuki
    DIABETES, 2024, 73
  • [8] Single-nucleus RNA-seq identifies Huntington disease astrocyte states
    Al-Dalahmah, Osama
    Sosunov, Alexander A.
    Shaik, A.
    Ofori, Kenneth
    Liu, Yang
    Vonsattel, Jean Paul
    Adorjan, Istvan
    Menon, Vilas
    Goldman, James E.
    ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2020, 8 (01)
  • [9] Single-nucleus RNA-seq identifies Huntington disease astrocyte states
    Osama Al-Dalahmah
    Alexander A. Sosunov
    A. Shaik
    Kenneth Ofori
    Yang Liu
    Jean Paul Vonsattel
    Istvan Adorjan
    Vilas Menon
    James E. Goldman
    Acta Neuropathologica Communications, 8
  • [10] Single-cell RNA-seq and bulk RNA-seq explore the prognostic value of exhausted T cells in hepatocellular carcinoma
    Tang, Xiaolong
    Miao, Yandong
    Yang, Lixia
    Ha, Wuhua
    Li, Zheng
    Mi, Denghai
    IET SYSTEMS BIOLOGY, 2023, 17 (04) : 228 - 244