A Survey of Differential Privacy Techniques for Federated Learning

被引:0
|
作者
Wang, Xin [1 ]
Li, Jiaqian [1 ]
Ding, Xueshuang [1 ]
Zhang, Haoji [1 ]
Sun, Lianshan [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Elect Informat & Artificial Intelligence, Xian 710021, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
基金
中国国家自然科学基金;
关键词
Differential privacy; Data privacy; Protection; Data models; Privacy; Training; Computational modeling; Servers; Noise; federated learning; privacy protection; lattice-based homomorphic encryption; zero-knowledge proofs;
D O I
10.1109/ACCESS.2024.3523909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of data privacy protection in the information age deserves people's attention. As a distributed machine learning technology, federated learning can effectively solve the problem of privacy security and data silos. Differential privacy(DP) technology is applied in federated learning(FL). By adding noise to raw data and model parameters, it can further enhance the degree of data privacy protection. Over the years, differential privacy technology based on federated learning framework has been developed, which is divided into central differential privacy federated learning(CDPFL) and local differential privacy federated learning(LDPFL). Although differential privacy may reduce the accuracy and convergence of federated learning models while protecting data privacy, researchers have proposed a variety of optimization methods to balance privacy protection and model performance. This paper comprehensively expounds the research status of differential privacy techniques based on the federated learning framework, first providing detailed introductions to federated learning and differential privacy technologies, and then summarizing the development status of two types of federated learning differential privacy(DPFL) techniques respectively; for CDPFL, the paper divides the discussion into first proposal of CDP and typical application examples, the impact of Gaussian mechanisms on model accuracy, optimization based on asynchronous differential privacy, and insights from other scholars; for LDPFL, the paper divides the discussion into first proposal of LDP and typical application examples, processing multidimensional data and improving model accuracy, existing methods and optimization for reducing communication costs, balancing privacy protection and data usability, LDPFL based on the Shuffle model, and insights from other scholars; following this, the paper addresses and summarizes the unique challenges introduced by incorporating differential privacy into federated learning and proposes solutions; finally, based on a summary of existing optimization techniques, the paper outlines future directions and specifically discusses three research ideas for enhancing the optimization effects of federated differential privacy: advanced optimization strategies combining Bayesian methods and the Alternating Direction Method of Multipliers (ADMM), integrating lattice homomorphic encryption techniques from cryptography to achieve more efficient differential privacy protection in federated learning, and exploring the application of zero-knowledge proof techniques in federated learning for privacy protection.
引用
收藏
页码:6539 / 6555
页数:17
相关论文
共 50 条
  • [1] Differential Privacy for Deep and Federated Learning: A Survey
    El Ouadrhiri, Ahmed
    Abdelhadi, Ahmed
    IEEE ACCESS, 2022, 10 : 22359 - 22380
  • [2] Staged Noise Perturbation for Privacy-Preserving Federated Learning
    Li, Zhe
    Chen, Honglong
    Gao, Yudong
    Ni, Zhichen
    Xue, Huansheng
    Shao, Huajie
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 936 - 947
  • [3] Personalized Federated Learning With Differential Privacy
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9530 - 9539
  • [4] Enhancing Differential Privacy for Federated Learning at Scale
    Baek, Chunghun
    Kim, Sungwook
    Nam, Dongkyun
    Park, Jihoon
    IEEE ACCESS, 2021, 9 : 148090 - 148103
  • [5] Asynchronous Federated Learning With Local Differential Privacy for Privacy-Enhanced Recommender Systems
    Zhao, Xiaopeng
    Bai, Xiao
    Sun, Guohao
    Yan, Zhe
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (07): : 7915 - 7929
  • [6] FedMDO: Privacy-Preserving Federated Learning via Mixup Differential Objective
    You, Xianyao
    Liu, Caiyun
    Li, Jun
    Sun, Yan
    Liu, Ximeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 10449 - 10463
  • [7] Towards Adaptive Privacy Protection for Interpretable Federated Learning
    Li, Zhe
    Chen, Honglong
    Ni, Zhichen
    Gao, Yudong
    Lou, Wei
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 14471 - 14483
  • [8] Differential Privacy Meets Federated Learning Under Communication Constraints
    Mohammadi, Nima
    Bai, Jianan
    Fan, Qiang
    Song, Yifei
    Yi, Yang
    Liu, Lingjia
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (22): : 22204 - 22219
  • [9] A Novel Approach for Differential Privacy-Preserving Federated Learning
    Elgabli, Anis
    Mesbah, Wessam
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2025, 6 : 466 - 476
  • [10] Local Differential Privacy Is Not Enough: A Sample Reconstruction Attack Against Federated Learning With Local Differential Privacy
    You, Zhichao
    Dong, Xuewen
    Li, Shujun
    Liu, Ximeng
    Ma, Siqi
    Shen, Yulong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1519 - 1534