Subfitness in distributive (semi)lattices

被引:0
作者
Bezhanishvili, G. [1 ]
Madden, J. [2 ]
Moshier, M. A. [3 ]
Tressl, M. [4 ]
Walters-Wayland, J. [3 ]
机构
[1] New Mexico State Univ, Las Cruces, NM USA
[2] Louisiana State Univ Baton Rouge, Baton Rouge, LA USA
[3] Chapman Univ, Orange, CA USA
[4] Univ Manchester, Manchester, England
关键词
Subfitness; Semilattice; Distributive lattice; Frame; Distributive envelope; LATTICES; PRIME;
D O I
10.1007/s00233-025-10506-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate whether the set of subfit elements of a distributive semilattice is an ideal. This question was raised by the second author at the BLAST conference in 2022. We show that in general it has a negative solution, however if the semilattice is a lattice, then the solution is positive. This is somewhat unexpected since, as we show, a semilattice is subfit if and only if so is its distributive lattice envelope.
引用
收藏
页数:14
相关论文
共 25 条
  • [2] Priestley Style Duality for Distributive Meet-semilattices
    Bezhanishvili, Guram
    Jansana, Ramon
    [J]. STUDIA LOGICA, 2011, 98 (1-2) : 83 - 122
  • [3] Gratzer-Hofmann-Lawson-Jung-Sunderhauf duality
    Bice, Tristan
    [J]. ALGEBRA UNIVERSALIS, 2021, 82 (02)
  • [4] Bochnak J., 1998, Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), V36, DOI DOI 10.1007/978-3-662-03718-8
  • [5] INJECTIVE HULLS OF SEMILATTICES
    BRUNS, G
    LAKSER, H
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (01): : 115 - &
  • [6] WEAKLY DISTRIBUTIVE SEMI-LATTICES
    CORNISH, WH
    HICKMAN, RC
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 32 (1-2): : 5 - 16
  • [7] Conjunctive join-semilattices
    Delzell, Charles N.
    Ighedo, Oghenetega
    Madden, James J.
    [J]. ALGEBRA UNIVERSALIS, 2021, 82 (04)
  • [8] Dickmann M, 2019, NEW MATH MONOGR, V35, P1, DOI 10.1017/9781316543870
  • [9] Distributive Envelopes and Topological Duality for Lattices via Canonical Extensions
    Gehrke, Mai
    van Gool, Samuel J.
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (03): : 435 - 461
  • [10] Gillman L., 1960, Rings of Continuous Functions, DOI [DOI 10.1007/978-1-4615-7819-2, 10.1007/978-1-4615-7819-2]