High-Entropy Layered Oxide Cathode Materials with Moderated Interlayer Spacing and Enhanced Kinetics for Sodium-Ion Batteries

被引:4
|
作者
Huang, Zefu [1 ]
Wang, Shijian [1 ]
Guo, Xin [2 ]
Marlton, Frederick [1 ]
Fan, Yameng [3 ]
Pang, Wei-Kong [3 ]
Huang, Tao [1 ]
Xiao, Jun [1 ]
Li, Dongfang [1 ]
Liu, Hao [1 ]
Gu, Qinfen [4 ]
Yang, Cheng-Chieh [5 ]
Dong, Chung-Li [5 ]
Sun, Bing [1 ]
Wang, Guoxiu [1 ]
机构
[1] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Ultimo, NSW 2007, Australia
[2] Shenzhen Univ Adv Technol, Fac Mat Sci & Energy Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Innovat Campus, Wollongong, NSW 2500, Australia
[4] Australian Synchrotron, ANSTO, Clayton, Vic 3168, Australia
[5] Tamkang Univ, Dept Phys, Tamsui 25137, Taiwan
基金
澳大利亚研究理事会;
关键词
cathode materials; high entropy; layered oxides; O3-type structure; sodium-ion batteries; STABILITY; SUBSTITUTION; EFFICIENT; ELECTRODE; BEHAVIOR; PHASES; IRON;
D O I
10.1002/adma.202410857
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) with low cost and environmentally friendly features have recently attracted significant attention for renewable energy storage. Sodium layer oxides stand out as a type of promising cathode material for SIBs owing to their high capacity, good rate performance, and high compatibility for manufacturing. However, the poor cycling stability of layer oxide cathodes due to structure distortion greatly impacts their practical applications. Herein, a high entropy doped Cu, Fe, and Mn-based layered oxide (HE-CFMO), Na0.95Li0.05Mg0.05Cu0.20Fe0.22Mn0.35Ti0.13O2 for high-performance SIBs, is designed. The HE-CFMO cathode possesses high-entropy transition metal (TM) layers with a homogeneous stress distribution, providing a moderated interlayer spacing to maintain the structure stability and enhance Na+ ion diffusion. In addition, Li doping in TM layers increases the Mn valence state, which effectively suppresses John-Teller effect, thus stabilizing the layered structure during cycling. Furthermore, the use of nontoxic and low-cost raw materials benefits future commercialization and reduces the risk of environmental pollution. As a result, the HE-CFMO cathode exhibits a super cycling performance with a 95% capacity retention after 300 cycles. This work provides a promising strategy to improve the structure stability and reaction kinetics of cathode materials for SIBs. A high-entropy doping strategy is employed to improve structure stability and enhance reaction kinetics of the layered oxide cathode materials for sodium-ion batteries. The homogeneous stress distribution, moderated interlayer spacing, and suppressed John-Teller effect of the high-entropy cathode materials contribute to the improved cycling stability and rate performance. image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] P2-type layered high-entropy oxides as sodium-ion cathode materials
    Wang, Junbo
    Dreyer, Soeren L.
    Wang, Kai
    Ding, Ziming
    Diemant, Thomas
    Karkera, Guruprakash
    Ma, Yanjiao
    Sarkar, Abhishek
    Zhou, Bei
    Gorbunov, Mikhail, V
    Omar, Ahmad
    Mikhailova, Daria
    Presser, Volker
    Fichtner, Maximilian
    Hahn, Horst
    Brezesinski, Torsten
    Breitung, Ben
    Wang, Qingsong
    MATERIALS FUTURES, 2022, 1 (03):
  • [22] Research Progress on Ordering Structure of Layered Oxide Cathode Materials for Sodium-Ion Batteries
    Gan L.
    Yao H.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (01): : 148 - 157
  • [23] Effect of copper substitution on the electrochemical properties of high entropy layered oxides cathode materials for sodium-ion batteries
    Deng, Honghao
    Liu, Liying
    Shi, Zhicong
    MATERIALS LETTERS, 2023, 340
  • [24] Challenges and Modification Strategies on High-Voltage Layered Oxide Cathode for Sodium-Ion Batteries
    Li, Yuesen
    Zhang, Tong
    Song, Zihao
    Huang, Yaohui
    Li, Fei
    Chen, Aibing
    Li, Fujun
    CHEMSUSCHEM, 2025, 18 (03)
  • [25] Medium- and high-entropy materials as positive electrodes for sodium-ion batteries: Quo Vadis?
    Garcia, N. G.
    Goncalves, Josue M.
    Real, Carla
    Freitas, Bruno
    Ruiz-Montoya, Jose G.
    Zanin, Hudson
    ENERGY STORAGE MATERIALS, 2024, 67
  • [26] Layered Oxide Cathode Materials for Sodium-Ion Batteries: A Mini-Review
    Gao, Liang
    Wang, Kai-Xue
    ENERGY & FUELS, 2024, 38 (19) : 18227 - 18241
  • [27] High-entropy configuration strategy boosts excellent rate performance of layered oxide for sodium-ion batteries
    Cai, Qiuyun
    Liu, Xiangyu
    Hu, Haonan
    Wang, Pengfei
    Jia, Min
    Zhang, Xiaoyu
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (05)
  • [28] Transition Metal Vacancy in Layered Cathode Materials for Sodium-Ion Batteries
    Li, Xun-Lu
    Ma, Cui
    Zhou, Yong-Ning
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (22)
  • [29] Six element high-entropy Prussian blue analogue cathode enabling high cycle stability for sodium-ion batteries
    Qian, Zhe
    Luo, Rui-Jie
    Ma, Cui
    Du, Chong-Yu
    Zeng, Jie
    Xu, Xuan
    Mei, Zhe
    Zhou, Zi-Ting
    Fu, Zheng-Wen
    Zhou, Yong-Ning
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [30] High-voltage stabilized high-entropy oxyfluoride cathode for high-rate sodium-ion batteries
    He, Li
    Feng, Tao
    Wu, Qingqing
    Cao, Yang
    Song, Fangxiang
    RARE METALS, 2025,