Wetland CH4 and CO2 emissions show opposite temperature dependencies along global climate gradients

被引:1
作者
Jiang, Baizhi [1 ]
Zhang, Junqi [1 ]
Zhou, Guiyao [2 ]
He, Yanghui [1 ]
Du, Zhenggang [1 ]
Liu, Ruiqiang [1 ]
Li, Jie [1 ]
Chai, Hua [1 ]
Zhou, Xuhui [1 ]
Chen, Hongyang [1 ]
机构
[1] Northeast Forestry Univ, Northeast Asia Ecosyst Carbon Sink Res Ctr NACC, Sch Ecol, Key Lab Sustainable Forest Ecosyst Management,Mini, Harbin 150040, Peoples R China
[2] CSIC, Lab Biodivers & Funcionamiento Ecosiste ? m, Inst Recursos Nat & Agrobiol Sevilla IRNAS, Ave Reina Mercedes 10, E-41012 Seville, Spain
基金
中国国家自然科学基金;
关键词
Greenhouse gases emissions; Temperature dependence; Spatial variation; Wetland ecosystem; Climate warming; METHANE EMISSIONS; SOIL RESPIRATION; NATURAL WETLANDS; CARBON; SENSITIVITY; DECOMPOSITION; FEEDBACKS; INCREASES; EXTENT; MODEL;
D O I
10.1016/j.catena.2024.108557
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Methane (CH4) and carbon dioxide (CO2) are the two largest contributors to the anthropogenically-driven greenhouse effect, which are the dominant gaseous end-products of wetland C decomposition. However, given our limited understanding of the spatial heterogeneity of wetland CH4 and CO2 emissions, it is uncertain how future warming may impact the emissions of these dangerous emissions. Here, we show opposite temperature dependencies of CH4 and CO2 emissions along global climate gradients using data from 45 widely distributed wetlands in the FLUXNET-CH4 database. Specifically, the temperature dependence of CH4 emissions increased as mean annual temperature (MAT) rose, while the dependence of CO2 emissions decreased, suggesting that in warmer areas, there is a greater risk for increased wetland CH4 emissions accompanying lower CO2 emissions in response to global warming. The ratio of wetland CH4 to CO2 emissions increased linearly with increasing temperature only when MAT and mean annual precipitation (MAP) are greater than 4.7 degrees C and 483 mm, respectively. This response indicates that, compared with those in cold and dry climates, wetland ecosystems in warmer and wetter climates are more prone to methanogenesis as temperatures rise. Our results suggest that neglecting spatial variation of temperature dependencies in models may underestimate wetland CH4 and CO2 emissions compared to the use of a static and consistent temperature dependence parameter when only considering temperature effects. These findings highlight the importance of incorporating climate-related variation in the temperature dependencies of CH4 and CO2 emissions into models to improve predictions of wetland C-climate change feedbacks in the Anthropocene.
引用
收藏
页数:8
相关论文
共 61 条
[21]   Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT [J].
Frankenberg, Christian ;
Bergamaschi, Peter ;
Butz, Andre ;
Houweling, Sander ;
Meirink, Jan Fokke ;
Notholt, Justus ;
Petersen, Anna Katinka ;
Schrijver, Hans ;
Warneke, Thorsten ;
Aben, Ilse .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (15)
[22]   Plant responses to rising vapor pressure deficit [J].
Grossiord, Charlotte ;
Buckley, Thomas N. ;
Cernusak, Lucas A. ;
Novick, Kimberly A. ;
Poulter, Benjamin ;
Siegwolf, Rolf T. W. ;
Sperry, John S. ;
McDowell, Nate G. .
NEW PHYTOLOGIST, 2020, 226 (06) :1550-1566
[23]   Study on the water level ecological amplitude of the wetland plant Triarrhena lularioriparia [J].
Guan, Na ;
Tang, Xiaojia ;
Xu, Minli ;
Cao, Yun .
JOURNAL OF FRESHWATER ECOLOGY, 2023, 38 (01)
[24]   Temperature-controlled organic carbon mineralization in lake sediments [J].
Gudasz, Cristian ;
Bastviken, David ;
Steger, Kristin ;
Premke, Katrin ;
Sobek, Sebastian ;
Tranvik, Lars J. .
NATURE, 2010, 466 (7305) :478-U3
[25]   Phenology is the dominant control of methane emissions in a tropical non-forested wetland [J].
Helfter, Carole ;
Gondwe, Mangaliso ;
Murray-Hudson, Michael ;
Makati, Anastacia ;
Lunt, Mark F. ;
Palmer, Paul, I ;
Skiba, Ute .
NATURE COMMUNICATIONS, 2022, 13 (01)
[26]   Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation [J].
Hoosbeek, MR ;
van Breemen, N ;
Berendse, F ;
Grosvernier, P ;
Vasander, H ;
Wallén, B .
NEW PHYTOLOGIST, 2001, 150 (02) :459-463
[27]   Massive peatland carbon banks vulnerable to rising temperatures [J].
Hopple, A. M. ;
Wilson, R. M. ;
Kolton, M. ;
Zalman, C. A. ;
Chanton, J. P. ;
Kostka, J. ;
Hanson, P. J. ;
Keller, J. K. ;
Bridgham, S. D. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[28]   Relative increases in CH4 and CO2 emissions from wetlands under global warming dependent on soil carbon substrates [J].
Hu, Han ;
Chen, Ji ;
Zhou, Feng ;
Nie, Ming ;
Hou, Deyi ;
Liu, Huan ;
Delgado-Baquerizo, Manuel ;
Ni, Haowei ;
Huang, Weigen ;
Zhou, Jizhong ;
Song, Xianwei ;
Cao, Xiaofeng ;
Sun, Bo ;
Zhang, Jiabao ;
Crowther, Thomas ;
Liang, Yuting .
NATURE GEOSCIENCE, 2024, 17 (01) :26-31
[29]   Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown [J].
Huang, Yuanyuan ;
Ciais, Phillipe ;
Luo, Yiqi ;
Zhu, Dan ;
Wang, Yingping ;
Qiu, Chunjing ;
Goll, Daniel S. ;
Guenet, Bertrand ;
Makowski, David ;
De Graaf, Inge ;
Leifeld, Jens ;
Kwon, Min Jung ;
Hu, Jing ;
Qu, Laiye .
NATURE CLIMATE CHANGE, 2021, 11 (07) :618-+
[30]   Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation [J].
Inglett, K. S. ;
Inglett, P. W. ;
Reddy, K. R. ;
Osborne, T. Z. .
BIOGEOCHEMISTRY, 2012, 108 (1-3) :77-90