Molecular mechanism of Dang-Shen-Yu-Xing decoction against Mycoplasma bovis pneumonia based on network pharmacology, molecular docking, molecular dynamics simulations and experimental verification

被引:0
|
作者
Yang, Mengmeng [1 ,2 ,3 ]
Yang, Fei [1 ,2 ]
Guo, Yanan [2 ]
Liu, Fan [1 ]
Li, Yong [4 ]
Qi, Yanrong [5 ]
Guo, Lei [1 ]
He, Shenghu [1 ]
机构
[1] Ningxia Univ, Coll Anim Sci & Technol, Yinchuan, Ningxia, Peoples R China
[2] Ningxia Acad Agr & Forestry Sci, Inst Anim Sci, Yinchuan, Ningxia, Peoples R China
[3] Ningxia Med Univ, Sch Basic Med, Yinchuan, Ningxia, Peoples R China
[4] Ningxia Polytech, Coll Life Sci & Technol, Yinchuan, Ningxia, Peoples R China
[5] Agr & Rural Bur Helan Cty, Yinchuan, Ningxia, Peoples R China
关键词
Dang-Shen-Yu-Xing decoction; Mycoplasma bovis pneumonia; network pharmacology; IL6; IL10; SWISS-MODEL; INHIBITION; KAEMPFEROL;
D O I
10.3389/fvets.2024.1431233
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Mycoplasma bovis pneumonia is a highly contagious respiratory infection caused by Mycoplasma bovis. It is particularly prevalent in calves, posing a significant threat to animal health and leading to substantial economic losses. Dang-Shen-Yu-Xing decoction is often used to treat this condition in veterinary clinics. It exhibits robust anti-inflammatory effects and can alleviate pulmonary fibrosis. However, its mechanism of action remains unclear. Therefore, this study aimed to preliminarily explore the molecular mechanism of Dang-Shen-Yu-Xing decoction for treating mycoplasma pneumonia in calves through a combination of network pharmacology, molecular docking, molecular dynamics simulation methods, and experimental validation. The active components and related targets of Dang-Shen-Yu-Xing decoction were extracted from several public databases. Additionally, complex interactions between drugs and targets were explored through network topology, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Subsequently, the binding affinity of drug to disease-related targets was verified through molecular docking and molecular dynamics simulation. Finally, the pharmacodynamics were verified via animal experiments. The primary network topology analysis revealed two core targets and 10 key active components of Dang-Shen-Yu-Xing decoction against Mycoplasma bovis pneumonia. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that the mechanism of Dang-Shen-Yu-Xing decoction for treating mycoplasma bovis pneumonia involved multiple signaling pathways, with the main pathways including PI3K-Akt and IL17 signaling pathways. Moreover, molecular docking predicted the binding affinity and conformation of the core targets of Dang-Shen-Yu-Xing decoction, IL6, and IL10, with the associated main active ingredients. The results showed a strong binding of the active ingredients to the hub target. Further, molecular docking dynamics simulation revealed three key active components of IL10 induced by Dang-Shen-Yu-Xing decoction against Mycoplasma bovis pneumonia. Finally, animal experiments confirmed Dang-Shen-Yu-Xing decoction pharmacodynamics, suggesting that it holds potential as an alternative therapy for treating mycoplasma bovis pneumonia.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Network pharmacology and molecular docking to explore the treatment potential and molecular mechanism of Si-Miao decoction against gouty arthritis
    Ma, Zebing
    Zeng, Peng
    Feng, Haibo
    Ni, Lili
    MEDICINE, 2024, 103 (22) : E38221
  • [42] Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis
    Shou, Xintian
    Wang, Yumeng
    Zhang, Xuesong
    Zhang, Yanju
    Yang, Yan
    Duan, Chenglin
    Yang, Yihan
    Jia, Qiulei
    Yuan, Guozhen
    Shi, Jingjing
    Shi, Shuqing
    Cui, Hanming
    Hu, Yuanhui
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [43] The combination of molecular docking and network pharmacology reveals the molecular mechanism of Danggui Niantong decoction in treating gout
    Liu, Yuan
    Luo, Di
    Xu, Bo
    MEDICINE, 2022, 101 (47) : E31535
  • [44] Network Pharmacology, Molecular Docking, and Experimental Validation to Investigate the Mechanism of Qifu Longkui Decoction in the Treatment of Colorectal Cancer
    Xiong, Yaling
    Liu, Yihao
    Chen, Xia
    Tang, Shuiwen
    Jian, Zhiyuan
    NATURAL PRODUCT COMMUNICATIONS, 2024, 19 (12)
  • [45] Exploring the potential molecular mechanism of Gualou Guizhi decoction in the treatment of rheumatoid arthritis based on network pharmacology and molecular docking
    Duan, Zhihao
    Jin, Can
    Ma, Shuai
    Liu, Jinlang
    Li, Shigang
    Zhou, You
    MEDICINE, 2024, 103 (01) : E36844
  • [46] Investigating the Molecular Mechanism of Qianghuo Shengshi Decoction in the Treatment of Ankylosing Spondylitis Based on Network Pharmacology and Molecular Docking Analysis
    Luo, Simin
    Xiao, Xiang
    Luo, Wenting
    Zhang, Xuan
    Zhang, Jian
    Tang, Songqi
    PROCESSES, 2022, 10 (08)
  • [47] Molecular mechanism of Achyranthis bidentatae radix and Morindae officinalis radix in osteoporosis therapy: An investigation based on network pharmacology, molecular docking, and molecular dynamics simulations
    Wang, Junwu
    Huang, Yilong
    Guo, Lanhong
    Li, Jingfeng
    Zhou, Shifeng
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2023, 36
  • [48] Network Pharmacology and Molecular Docking Validation to Explore the Pharmacological Mechanism of Zhuling Decoction against Nephrotic Syndrome
    Chen, Na
    Chu, Yanqi
    Su, Su
    Zhang, Qingxia
    Zhang, Lan
    CURRENT PHARMACEUTICAL DESIGN, 2024, 30 (28) : 2244 - 2256
  • [49] Network Pharmacology Combined with Molecular Docking Approach to Investigate the Mechanism of ChuShiWeiLing Decoction Against Perianal Eczema
    Liu, Ying
    Hao, Min
    Fang, Xinyue
    Qian, Yifei
    Wang, Yahui
    Yan, Shuai
    CURRENT PHARMACEUTICAL DESIGN, 2024, 30 (18) : 1442 - 1458
  • [50] Unraveling the Mechanism of Zhibaidihuang Decoction against IgA Nephropathy Using Network Pharmacology and Molecular Docking Analyses
    Deng, Xiaoqi
    Luo, Yu
    Lu, Meiqi
    Guan, Tianjun
    Li, Yu
    Guo, Xiaodan
    TOHOKU JOURNAL OF EXPERIMENTAL MEDICINE, 2023, 259 (01) : 37 - 47