TraitTrainR: accelerating large-scale simulation under models of continuous trait evolution

被引:0
作者
Lozano, Jenniffer Roa [1 ,2 ]
Duncan, Mataya [1 ,2 ]
Mckenna, Duane D. [3 ,4 ]
Castoe, Todd A. [5 ]
Degiorgio, Michael [6 ]
Adams, Richard [1 ,2 ]
机构
[1] Univ Arkansas, Ctr Agr Data Analyt, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Dept Entomol & Plant Pathol, Fayetteville, AR 72701 USA
[3] Univ Memphis, Dept Biol Sci, Memphis, TN 38152 USA
[4] Univ Memphis, Ctr Biodivers Res, Memphis, TN 38152 USA
[5] Univ Texas Arlington, Dept Biol, Arlington, TX 76010 USA
[6] Florida Atlantic Univ, Dept Elect Engn & Comp Sci, Boca Raton, FL 33431 USA
来源
BIOINFORMATICS ADVANCES | 2025年 / 5卷 / 01期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
WITHIN-SPECIES VARIATION; STABILIZING SELECTION; ANCESTRAL STATE; EARLY BURSTS; POPULATION; ECOLOGY; RECONSTRUCT; PHYLOGENIES; INFERENCE; CHOICE;
D O I
10.1093/bioadv/vbae196
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation The scale and scope of comparative trait data are expanding at unprecedented rates, and recent advances in evolutionary modeling and simulation sometimes struggle to match this pace. Well-organized and flexible applications for conducting large-scale simulations of evolution hold promise in this context for understanding models and more so our ability to confidently estimate them with real trait data sampled from nature.Results We introduce TraitTrainR, an R package designed to facilitate efficient, large-scale simulations under complex models of continuous trait evolution. TraitTrainR employs several output formats, supports popular trait data transformations, accommodates multi-trait evolution, and exhibits flexibility in defining input parameter space and model stacking. Moreover, TraitTrainR permits measurement error, allowing for investigation of its potential impacts on evolutionary inference. We envision a wealth of applications of TraitTrainR, and we demonstrate one such example by examining the problem of evolutionary model selection in three empirical phylogenetic case studies. Collectively, these demonstrations of applying TraitTrainR to explore problems in model selection underscores its utility and broader promise for addressing key questions, including those related to experimental design and statistical power, in comparative biology.Availability and implementation TraitTrainR is developed in R 4.4.0 and is freely available at https://github.com/radamsRHA/TraitTrainR/, which includes detailed documentation, quick-start guides, and a step-by-step tutorial.
引用
收藏
页数:7
相关论文
共 70 条
[61]   Phylogenetic inference using generative adversarial networks [J].
Smith, Megan L. ;
Hahn, Matthew W. .
BIOINFORMATICS, 2023, 39 (09)
[62]   A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera Aspergillus and Penicillium [J].
Steenwyk, Jacob L. ;
Shen, Xing-Xing ;
Lind, Abigail L. ;
Goldman, Gustavo H. ;
Rokas, Antonis .
MBIO, 2019, 10 (04)
[63]   Trait-Dependent Biogeography: (Re)Integrating Biology into Probabilistic Historical Biogeographical Models [J].
Sukumaran, Jeet ;
Knowles, L. Lacey .
TRENDS IN ECOLOGY & EVOLUTION, 2018, 33 (06) :390-398
[64]   Gene content evolution in the arthropods [J].
Thomas, Gregg W. C. ;
Dohmen, Elias ;
Hughes, Daniel S. T. ;
Murali, Shwetha C. ;
Poelchau, Monica ;
Glastad, Karl ;
Anstead, Clare A. ;
Ayoub, Nadia A. ;
Batterham, Phillip ;
Bellair, Michelle ;
Binford, Greta J. ;
Chao, Hsu ;
Chen, Yolanda H. ;
Childers, Christopher ;
Dinh, Huyen ;
Doddapaneni, Harsha Vardhan ;
Duan, Jian J. ;
Dugan, Shannon ;
Esposito, Lauren A. ;
Friedrich, Markus ;
Garb, Jessica ;
Gasser, Robin B. ;
Goodisman, Michael A. D. ;
Gundersen-Rindal, Dawn E. ;
Han, Yi ;
Handler, Alfred M. ;
Hatakeyama, Masatsugu ;
Hering, Lars ;
Hunter, Wayne B. ;
Ioannidis, Panagiotis ;
Jayaseelan, Joy C. ;
Kalra, Divya ;
Khila, Abderrahman ;
Korhonen, Pasi K. ;
Lee, Carol Eunmi ;
Lee, Sandra L. ;
Li, Yiyuan ;
Lindsey, Amelia R. I. ;
Mayer, Georg ;
McGregor, Alistair P. ;
McKenna, Duane D. ;
Misof, Bernhard ;
Munidasa, Mala ;
Munoz-Torres, Monica ;
Muzny, Donna M. ;
Niehuis, Oliver ;
Osuji-Lacy, Nkechinyere ;
Palli, Subba R. ;
Panfilio, Kristen A. ;
Pechmann, Matthias .
GENOME BIOLOGY, 2020, 21 (01)
[65]   Comparative biology: beyond sequence analysis [J].
Tirosh, Itay ;
Bilu, Yonatan ;
Barkai, Naama .
CURRENT OPINION IN BIOTECHNOLOGY, 2007, 18 (04) :371-377
[66]   AVONET: morphological, ecological and geographical data for all birds [J].
Tobias, Joseph A. ;
Sheard, Catherine ;
Pigot, Alex L. ;
Devenish, Adam J. M. ;
Yang, Jingyi ;
Sayol, Ferran ;
Neate-Clegg, Montague H. C. ;
Alioravainen, Nico ;
Weeks, Thomas L. ;
Barber, Robert A. ;
Walkden, Patrick A. ;
MacGregor, Hannah E. A. ;
Jones, Samuel E. I. ;
Vincent, Claire ;
Phillips, Anna G. ;
Marples, Nicola M. ;
Montano-Centellas, Flavia A. ;
Leandro-Silva, Victor ;
Claramunt, Santiago ;
Darski, Bianca ;
Freeman, Benjamin G. ;
Bregman, Tom P. ;
Cooney, Christopher R. ;
Hughes, Emma C. ;
Capp, Elliot J. R. ;
Varley, Zoe K. ;
Friedman, Nicholas R. ;
Korntheuer, Heiko ;
Corrales-Vargas, Andrea ;
Trisos, Christopher H. ;
Weeks, Brian C. ;
Hanz, Dagmar M. ;
Topfer, Till ;
Bravo, Gustavo A. ;
Remes, Vladimir ;
Nowak, Larissa ;
Carneiro, Lincoln S. ;
Moncada R., Amilkar J. ;
Matysiokova, Beata ;
Baldassarre, Daniel T. ;
Martinez-Salinas, Alejandra ;
Wolfe, Jared D. ;
Chapman, Philip M. ;
Daly, Benjamin G. ;
Sorensen, Marjorie C. ;
Neu, Alexander ;
Ford, Michael A. ;
Mayhew, Rebekah J. ;
Fabio Silveira, Luis ;
Kelly, David J. .
ECOLOGY LETTERS, 2022, 25 (03) :581-597
[67]   Rethinking phylogenetic comparative methods [J].
Uyeda, Josef C. ;
Zenil-Ferguson, Rosana ;
Pennell, Matthew W. .
SYSTEMATIC BIOLOGY, 2018, 67 (06) :1091-1109
[68]   Deep learning from phylogenies to uncover the epidemiological dynamics of outbreaks [J].
Voznica, J. ;
Zhukova, A. ;
Boskova, V. ;
Saulnier, E. ;
Lemoine, F. ;
Moslonka-Lefebvre, M. ;
Gascuel, O. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[69]   When can we reconstruct the ancestral state? Beyond Brownian motion [J].
Vu, Nhat L. ;
Nguyen, Thanh P. ;
Nguyen, Binh T. ;
Dinh, Vu ;
Ho, Lam Si Tung .
JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (06)
[70]   A Bootstrap Likelihood Approach to Bayesian Computation [J].
Zhu, Weixuan ;
Marin, J. Miguel ;
Leisen, Fabrizio .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2016, 58 (02) :227-244