Thermally tunable THz modulator based on a metasurface with VO2

被引:0
|
作者
Xu, Lanlan [1 ]
Wang, Naihui [1 ]
机构
[1] Heilongjiang Univ Sci & Technol, Coll Sci, Harbin 150022, Peoples R China
关键词
TERAHERTZ; MICROWAVE;
D O I
10.1364/AO.544007
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study introduces a "C"-shaped terahertz (THz) metasurface modulator that leverages the phase transition properties of vanadium dioxide (VO2) between its metallic and insulating states. The resonant frequencies of the modulator are tunable by the structural geometric parameters. At low temperatures, the single resonance mode is primarily driven by the longitudinal metal arm, whereas at high temperatures, the single resonance mode is dominated by the transverse arm of VO2, transitioning to the metallic phase. The modulation achieves a modulation depth exceeding 50% across four filling methods, and reaching a maximum of 97% at 0.405 THz. Additionally, it demonstrates high-temperature sensitivity, achieving a value of 0.046/degrees C in the range of 50-74 degrees C. These results highlight the excellent modulation performance and temperature-sensing capabilities of the proposed metasurface modulator. With potential applications in smart windows, sensors, and 6G communications, this work offers valuable insights into advancing THz functional devices and improving their performance and practicality. (c) 2025 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:1420 / 1426
页数:7
相关论文
共 50 条
  • [31] Beam steerable terahertz antenna based on VO2
    Liu Zi-Yu
    Qi Li-Mei
    Dao Ri-Na
    Dai Lin-Lin
    Wu Li-Qin
    ACTA PHYSICA SINICA, 2022, 71 (18)
  • [32] Optically Switchable THz Ultrafast Modulator Based on Cross-shaped Resonators Graphene Metasurface
    Grebenchukov, A. N.
    Zaitsev, A. D.
    Novoselov, M. G.
    Kornilov, E. V.
    Soboleva, V. Y.
    Khodzitsky, M. K.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 3233 - 3235
  • [33] Tunable dual-broadband terahertz metamaterial absorber based on a simple design of slotted VO2 resonator
    Ri, Kwang-Jin
    Ri, Chung-Ho
    OPTICS COMMUNICATIONS, 2023, 536
  • [34] Actively Tunable "Single Peak/Broadband" Absorbent, Highly Sensitive Terahertz Smart Device Based on VO2
    Fan, Baodian
    Tang, Hao
    Wu, Pinghui
    Qiu, Yu
    Jiang, Linqin
    Lin, Lingyan
    Su, Jianzhi
    Zhou, Bomeng
    Pan, Miao
    MICROMACHINES, 2024, 15 (02)
  • [35] Sensing enhancement of a Fabry-Perot THz cavity using switchable VO2 mirrors
    Papari, Gian Paolo
    Pellegrino, Anna Lucia
    Malandrino, Graziella
    Andreone, Antonello
    OPTICS EXPRESS, 2022, 30 (11) : 19402 - 19415
  • [36] Dynamic Manipulation of THz Waves Enabled by Phase-Transition VO2 Thin Film
    Lu, Chang
    Lu, Qingjian
    Gao, Min
    Lin, Yuan
    NANOMATERIALS, 2021, 11 (01) : 1 - 27
  • [37] Hilbert resonator-based multiband tunable graphene metasurface polarizer for lower THz frequency
    Vishal Sorathiya
    Sunil Lavadiya
    Ahmed AlGhamdi
    Osama S. Faragallah
    Hala S. El-Sayed
    Bijrajsinh Parmar
    Mahmoud M. A. Eid
    Ahmed Nabih Zaki Rashed
    Journal of Computational Electronics, 2022, 21 : 280 - 288
  • [38] Hilbert resonator-based multiband tunable graphene metasurface polarizer for lower THz frequency
    Sorathiya, Vishal
    Lavadiya, Sunil
    AlGhamdi, Ahmed
    Faragallah, Osama S.
    El-Sayed, Hala S.
    Parmar, Bijrajsinh
    Eid, Mahmoud M. A.
    Rashed, Ahmed Nabih Zaki
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2022, 21 (01) : 280 - 288
  • [39] Thermally tunable metasurface for phase dynamic controlling of terahertz wave
    Zhang, Zhendong
    Li, Yan
    Cheng, Kaixiang
    Deng, Duo
    Wang, Xiaosai
    Liu, Yi
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [40] Metasurface-Based Optical Liquid Crystal Cell as an Ultrathin Spatial Phase Modulator for THz Applications
    Buchnev, O.
    Podoliak, N.
    Kaltenecker, K.
    Walther, M.
    Fedotov, V. A.
    ACS PHOTONICS, 2020, 7 (11) : 3199 - 3206