Probabilistic inverse design of metasurfaces using mixture density neural networks

被引:0
|
作者
Torfeh, Mahsa [1 ]
Hsu, Chia Wei [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICS-PHOTONICS | 2025年 / 7卷 / 01期
基金
美国国家科学基金会;
关键词
Nanophotonics; metasurface; inverse design; deep neural network; mixture density network; structured light; TOPOLOGY OPTIMIZATION; POLARIZATION; PHASE;
D O I
10.1088/2515-7647/ad9b82
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces are planar sub-micron structures that can outperform traditional optical elements and miniaturize optical devices. Optimization-based inverse designs of metasurfaces often get trapped in a local minimum, and the inherent non-uniqueness property of the inverse problem plagues approaches based on conventional neural networks. Here, we use mixture density neural networks to overcome the non-uniqueness issue for the design of metasurfaces. Once trained, the mixture density network (MDN) can predict a probability distribution of different optimal structures given any desired property as the input, without resorting to an iterative local optimization. As an example, we use the MDN to design metasurfaces that project structured light patterns with varying fields of view. This approach enables an efficient and reliable inverse design of fabrication-ready metasurfaces with complex functionalities without getting trapped in local optima.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Transfer Learning-Assisted Inverse Modeling in Nanophotonics Based on Mixture Density Networks
    Cheng, Liang
    Singh, Prashant
    Ferranti, Francesco
    IEEE ACCESS, 2024, 12 : 55218 - 55224
  • [42] Inverse design broadband achromatic metasurfaces for longwave infrared
    Wu, Hui
    Yi, Yingting
    Zhang, Ning
    Zhang, Yubin
    Wu, Hao
    Yi, Zao
    Liu, Shuangli
    Yi, Yougen
    Tang, Bin
    Sun, Tangyou
    OPTICAL MATERIALS, 2024, 148
  • [43] Inverse design of nonlinear metasurfaces for sum frequency generation
    Li, Neuton
    Zhang, Jihua
    Neshev, Dragomir N.
    Sukhorukov, Andrey A.
    NANOPHOTONICS, 2024, 13 (18) : 3363 - 3372
  • [44] A Generative Machine Learning-Based Approach for Inverse Design of Multilayer Metasurfaces
    Naseri, Parinaz
    Hum, Sean, V
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (09) : 5725 - 5739
  • [45] Inverse Design of Lateral Hybrid Metasurfaces: An AI approach
    Fang, Rui
    Ghasemi, Amir
    Zeze, Dagou
    Hedayati, Mehdi Keshavarz
    MACHINE LEARNING IN PHOTONICS, 2024, 13017
  • [46] Physics-Informed Inverse Design of Programmable Metasurfaces
    Xu, Yucheng
    Yang, Jia-Qi
    Fan, Kebin
    Wang, Sheng
    Wu, Jingbo
    Zhang, Caihong
    Zhan, De-Chuan
    Padilla, Willie J.
    Jin, Biaobing
    Chen, Jian
    Wu, Peiheng
    ADVANCED SCIENCE, 2024, 11 (41)
  • [47] Channel Inverse Design Using Tandem Neural Network
    Ma, Hanzhi
    Li, Er-Ping
    Wang, Yuechen
    Shi, Bobi
    Schutt-Aine, Jose
    Cangellaris, Andreas
    Chen, Xu
    2022 IEEE 26TH WORKSHOP ON SIGNAL AND POWER INTEGRITY (SPI), 2022,
  • [48] Inverse design of organic light-emitting diode structure based on deep neural networks
    Kim, Sanmun
    Shin, Jeong Min
    Lee, Jaeho
    Park, Chanhyung
    Lee, Songju
    Park, Juho
    Seo, Dongjin
    Park, Sehong
    Park, Chan Y.
    Jang, Min Seok
    NANOPHOTONICS, 2021, 10 (18) : 4533 - 4541
  • [49] Inverse design of microwave waveguide devices based on deep physics-informed neural networks
    Liu, Jin-Pin
    Wang, Bing-Zhong
    Chen, Chuan-Sheng
    Wang, Ren
    ACTA PHYSICA SINICA, 2023, 72 (08)
  • [50] Predicting Multiple Pregrasping Poses by Combining Deep Convolutional Neural Networks with Mixture Density Networks
    Moon, Sungphill
    Park, Youngbin
    Suh, Il Hong
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 581 - 590