Probabilistic inverse design of metasurfaces using mixture density neural networks

被引:0
|
作者
Torfeh, Mahsa [1 ]
Hsu, Chia Wei [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICS-PHOTONICS | 2025年 / 7卷 / 01期
基金
美国国家科学基金会;
关键词
Nanophotonics; metasurface; inverse design; deep neural network; mixture density network; structured light; TOPOLOGY OPTIMIZATION; POLARIZATION; PHASE;
D O I
10.1088/2515-7647/ad9b82
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces are planar sub-micron structures that can outperform traditional optical elements and miniaturize optical devices. Optimization-based inverse designs of metasurfaces often get trapped in a local minimum, and the inherent non-uniqueness property of the inverse problem plagues approaches based on conventional neural networks. Here, we use mixture density neural networks to overcome the non-uniqueness issue for the design of metasurfaces. Once trained, the mixture density network (MDN) can predict a probability distribution of different optimal structures given any desired property as the input, without resorting to an iterative local optimization. As an example, we use the MDN to design metasurfaces that project structured light patterns with varying fields of view. This approach enables an efficient and reliable inverse design of fabrication-ready metasurfaces with complex functionalities without getting trapped in local optima.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Inverse design of phononic crystals by artificial neural networks
    Cao L.
    Zhu W.
    Wu J.
    Zhang C.
    1992, Chinese Society of Theoretical and Applied Mechanics (53): : 1992 - 1998
  • [32] Hybrid inverse design of photonic structures by combining optimization methods with neural networks
    Deng, Lin
    Xu, Yihao
    Liu, Yongmin
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2022, 52
  • [33] PHYSICS-INFORMED NEURAL NETWORKS WITH HARD CONSTRAINTS FOR INVERSE DESIGN\ast
    Lu, Lu
    Pestourie, Raphael
    Yao, Wenjie
    Wang, Zhicheng
    Verdugo, Francesc
    Johnson, Steven G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06) : B1105 - B1132
  • [34] A novel approach to inverse design of wind turbine airfoils using tandem neural networks
    Anand, Apurva
    Marepally, Koushik
    Safdar, M. Muneeb
    Baeder, James D.
    WIND ENERGY, 2024, 27 (09) : 900 - 921
  • [35] Empowering Metasurfaces with Inverse Design: Principles and Applications
    Li, Zhaoyi
    Pestourie, Raphael
    Lin, Zin
    Johnson, Steven G.
    Capasso, Federico
    ACS PHOTONICS, 2022, 9 (07): : 2178 - 2192
  • [36] Efficient Inverse Design of Large-Area Metasurfaces for Incoherent Light
    Pestourie, Raphael
    Yao, Wenjie
    Kante, Boubacar
    Johnson, Steven G.
    ACS PHOTONICS, 2023, 10 (04): : 854 - 860
  • [37] Inverse design of convolutional neural networks via nanophotonic kernels
    Tang, Kaida
    Hao, Ran
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2024, 38 (10) : 1176 - 1186
  • [38] Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures
    Liu, Dianjing
    Tan, Yixuan
    Khoram, Erfan
    Yu, Zongfu
    ACS PHOTONICS, 2018, 5 (04): : 1365 - 1369
  • [39] Inverse Design of Metasurface Using Combined Neural Network and Transfer Function
    Yuan, Lin
    Yang, Xue-Song
    Wang, Chao
    Wang, Bing-Zhong
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 2027 - 2028
  • [40] Inverse design of core-shell particles with discrete material classes using neural networks
    Kuhn, Lina
    Repan, Taavi
    Rockstuhl, Carsten
    SCIENTIFIC REPORTS, 2022, 12 (01)