Probabilistic inverse design of metasurfaces using mixture density neural networks

被引:0
|
作者
Torfeh, Mahsa [1 ]
Hsu, Chia Wei [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICS-PHOTONICS | 2025年 / 7卷 / 01期
基金
美国国家科学基金会;
关键词
Nanophotonics; metasurface; inverse design; deep neural network; mixture density network; structured light; TOPOLOGY OPTIMIZATION; POLARIZATION; PHASE;
D O I
10.1088/2515-7647/ad9b82
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces are planar sub-micron structures that can outperform traditional optical elements and miniaturize optical devices. Optimization-based inverse designs of metasurfaces often get trapped in a local minimum, and the inherent non-uniqueness property of the inverse problem plagues approaches based on conventional neural networks. Here, we use mixture density neural networks to overcome the non-uniqueness issue for the design of metasurfaces. Once trained, the mixture density network (MDN) can predict a probability distribution of different optimal structures given any desired property as the input, without resorting to an iterative local optimization. As an example, we use the MDN to design metasurfaces that project structured light patterns with varying fields of view. This approach enables an efficient and reliable inverse design of fabrication-ready metasurfaces with complex functionalities without getting trapped in local optima.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Stochastic loss reserving with mixture density neural networks
    Al-Mudafer, Muhammed Taher
    Avanzi, Benjamin
    Taylor, Greg
    Wong, Bernard
    INSURANCE MATHEMATICS & ECONOMICS, 2022, 105 : 144 - 174
  • [22] Investigation of Stacked Deep Neural Networks and Mixture Density Networks for Acoustic-to-Articulatory Inversion
    Xie, Xurong
    Liu, Xunying
    Lee, Tan
    Wang, Lan
    2018 11TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2018, : 36 - 40
  • [23] Inverse Design Method for Metasurfaces Based on Residual Architecture
    Gu, Qiongchan
    Zhang, Ruizhe
    ACTA OPTICA SINICA, 2025, 45 (03)
  • [24] Inverse design of waveguide grating mode converters using artificial neural networks
    Hejazi, Ali Mohajer
    Ginis, Vincent
    JOURNAL OF OPTICS, 2025, 27 (04)
  • [25] Physics-Based Approach for a Neural Networks Enabled Design of All-Dielectric Metasurfaces
    Tanriover, Ibrahim
    Hadibrata, Wisnu
    Aydin, Koray
    ACS PHOTONICS, 2020, 7 (08) : 1957 - 1964
  • [26] Probabilistic invertible neural network for inverse design space exploration and reasoning
    Zhang, Yiming
    Pan, Zhiwei
    Zhang, Shuyou
    Qiu, Na
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02): : 860 - 881
  • [27] Inverse design of metasurfaces for end-to-end computational imaging
    Zhang, Qiangbo
    Yu, Zeqing
    Liu, Xinyu
    Zhang, Yang
    Xu, Zhou
    Wang, Chang
    Zheng, Zhenrong
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY IX, 2022, 12317
  • [28] Inverse Design of Nonlinear Polaritonic Metasurfaces for Second Harmonic Generation
    Mann, Sander A. .
    Goh, Heedong
    Alu, Andrea
    ACS PHOTONICS, 2023, 10 (04): : 993 - 1000
  • [29] Nuclei Detection Using Mixture Density Networks
    Koohababni, Navid Alemi
    Jahanifar, Mostafa
    Gooya, Ali
    Rajpoot, Nasir
    MACHINE LEARNING IN MEDICAL IMAGING: 9TH INTERNATIONAL WORKSHOP, MLMI 2018, 2018, 11046 : 241 - 248
  • [30] Tandem Neural Networks for Electric Machine Inverse Design
    Xu, Yihao
    Wang, Bingnan
    Sakamoto, Yusuke
    Yamamoto, Tatsuya
    Nishimura, Yuki
    Koike-Akino, Toshiaki
    Wang, Ye
    2023 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE, IEMDC, 2023,