Probabilistic inverse design of metasurfaces using mixture density neural networks

被引:0
|
作者
Torfeh, Mahsa [1 ]
Hsu, Chia Wei [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICS-PHOTONICS | 2025年 / 7卷 / 01期
基金
美国国家科学基金会;
关键词
Nanophotonics; metasurface; inverse design; deep neural network; mixture density network; structured light; TOPOLOGY OPTIMIZATION; POLARIZATION; PHASE;
D O I
10.1088/2515-7647/ad9b82
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces are planar sub-micron structures that can outperform traditional optical elements and miniaturize optical devices. Optimization-based inverse designs of metasurfaces often get trapped in a local minimum, and the inherent non-uniqueness property of the inverse problem plagues approaches based on conventional neural networks. Here, we use mixture density neural networks to overcome the non-uniqueness issue for the design of metasurfaces. Once trained, the mixture density network (MDN) can predict a probability distribution of different optimal structures given any desired property as the input, without resorting to an iterative local optimization. As an example, we use the MDN to design metasurfaces that project structured light patterns with varying fields of view. This approach enables an efficient and reliable inverse design of fabrication-ready metasurfaces with complex functionalities without getting trapped in local optima.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dynamic Inverse Design of Broadband Metasurfaces with Synthetical Neural Networks
    Jia, Yuetian
    Fan, Zhixiang
    Qian, Chao
    del Hougne, Philipp
    Chen, Hongsheng
    LASER & PHOTONICS REVIEWS, 2024, 18 (10)
  • [2] Neural networks enabled forward and inverse design of reconfigurable metasurfaces
    Tanriover, Ibrahim
    Hadibrata, Wisnu
    Scheuer, Jacob
    Aydin, Koray
    OPTICS EXPRESS, 2021, 29 (17) : 27219 - 27227
  • [3] Inverse design of generic metasurfaces for multifunctional wavefront shaping based on deep neural networks
    Cheng, Jierong
    Li, Runze
    Wang, Yu
    Yuan, Yiwu
    Wang, Xianghui
    Chang, Shengjiang
    OPTICS AND LASER TECHNOLOGY, 2023, 159
  • [4] Generative Model for the Inverse Design of Metasurfaces
    Liu, Zhaocheng
    Zhu, Dayu
    Rodrigues, Sean P.
    Lee, Kyu-Tae
    Cai, Wenshan
    NANO LETTERS, 2018, 18 (10) : 6570 - 6576
  • [5] Optimizing the design of birefringent metasurfaces with deep learning neural networks
    Xu, Athena
    Semnani, Behrooz
    Houk, Anna Maria
    Soltani, Mohammad
    Treacy, Jacqueline
    Bajcsy, Michal
    PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES XIV, 2024, 12896
  • [6] Review of Generative Models for the Inverse Design of Nanophotonic Metasurfaces
    Moon, Seunghwan
    Kang, Jihun
    Yeo, Jong -Souk
    APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, 2023, 32 (06): : 141 - 150
  • [7] An Efficient Artificial Neural Network Model for Inverse Design of Metasurfaces
    Yuan, Lin
    Wang, Lan
    Yang, Xue-Song
    Huang, Hao
    Wang, Bing-Zhong
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (06): : 1013 - 1017
  • [8] Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces
    An, Sensong
    Zheng, Bowen
    Shalaginov, Mikhail Y.
    Tang, Hong
    Li, Hang
    Zhou, Li
    Dong, Yunxi
    Haerinia, Mohammad
    Agarwal, Anuradha Murthy
    Rivero-Baleine, Clara
    Kang, Myungkoo
    Richardson, Kathleen A.
    Gu, Tian
    Hu, Juejun
    Fowler, Clayton
    Zhang, Hualiang
    ADVANCED OPTICAL MATERIALS, 2022, 10 (03)
  • [9] Inverse design of colored daytime radiative coolers using deep neural networks
    Keawmuang, Harit
    Badloe, Trevon
    Lee, Chihun
    Park, Junkyeong
    Rho, Junsuk
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 271
  • [10] Deep Neural Networks for Inverse Design of Nanophotonic Devices
    Kojima, Keisuke
    Tahersima, Mohammad H.
    Koike-Akino, Toshiaki
    Jha, Devesh K.
    Tang, Yingheng
    Wang, Ye
    Parsons, Kieran
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (04) : 1010 - 1019