Trajectory Classification Through Topological Data Analysis Perspectives

被引:0
作者
Esteve, Miriam [1 ]
Falco, Antonio [1 ]
机构
[1] Univ Cardenal Herrera CEU, Dept Math Phys & Technol Sci, Elche 03203, Spain
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Trajectory; Feature extraction; Software; Data analysis; Accuracy; Random forests; Long short term memory; Kernel; Computational complexity; Analytical models; Geometrical features; classification; clustering; trajectory analysis;
D O I
10.1109/ACCESS.2025.3543111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper examines the application of Topological Data Analysis (TDA) for trajectory classification, aiming to improve the interpretation of complex spatial movement patterns. By utilizing TDA, we explore the hidden structures in trajectory datasets, offering a fresh perspective on classification methods. Our study integrates TDA into trajectory analysis, highlighting its ability to capture spatial features that conventional methods may miss. We assess TDA's effectiveness using both simulated and real-world trajectory data from a survey comparing existing classifiers. TDA demonstrated significant performance improvements, with accuracy gains of up to 42.95% in certain scenarios. Notably, in real-world datasets, TDA increased accuracy by 38.49% for hurricane trajectory classification and improved precision by 39.24%. Simulated trajectories provided a controlled environment to further test TDA's robustness. The results underscore the potential of TDA to enhance trajectory analysis, uncovering complex spatial patterns and relationships that traditional methods may overlook.
引用
收藏
页码:32458 / 32469
页数:12
相关论文
共 45 条
  • [21] Lee S., 2008, "Proc. VLDB Endowment, V1, P1465
  • [22] Leite da Silva Camila, 2019, 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). Proceedings, P788, DOI 10.1109/BRACIS.2019.00141
  • [23] Li Z., 2022, P INT C DAT MIN ICDM, P215
  • [24] Liang Z., 2019, IEEE Trans. Intell. Transp. Syst., V20, P2119
  • [25] Liang Z., 2019, "IEEE Trans. Intell. Transp. Syst., V20, P2127
  • [26] Evaluating the effect of compressing algorithms for trajectory similarity and classification problems
    Makris, Antonios
    da Silva, Camila Leite
    Bogorny, Vania
    Alvares, Luis Otavio
    Macedo, Jose Antonio
    Tserpes, Konstantinos
    [J]. GEOINFORMATICA, 2021, 25 (04) : 679 - 711
  • [27] COMPARISON OF PREDICTED AND OBSERVED SECONDARY STRUCTURE OF T4 PHAGE LYSOZYME
    MATTHEWS, BW
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 405 (02) : 442 - 451
  • [28] Morris B., 2009, PROC IEEE C COMPUT V
  • [29] Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1
  • [30] Patrick L., 2005, Int. J. Geographical Inf. Sci., V19, P581