Classification of Cloud Particle Habits Using Transfer Learning with a Deep Convolutional Neural Network

被引:0
作者
Xu, Yefeng [1 ,2 ,3 ]
Jiao, Ruili [3 ]
Li, Qiubai [4 ,5 ]
Huang, Minsong [1 ,2 ,5 ,6 ]
机构
[1] China Meteorol Adm, China Meteorol Adm Basin Heavy Rainfall Key Lab, Inst Heavy Rain, Hubei Key Lab Heavy Rain Monitoring & Warning Res, Wuhan 430205, Peoples R China
[2] China Meteorol Adm, Nanjing Joint Inst Atmospher Sci, Key Lab Transportat Meteorol, Nanjing 210041, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Sch Informat & Commun Engn, Beijing 100101, Peoples R China
[4] Yunnan Univ, Sch Earth Sci, Kunming 650091, Peoples R China
[5] Chinese Acad Sci, Inst Atmospher & Phys, Beijing 100029, Peoples R China
[6] China Meteorol Adm, Key Lab Cloud Precipitat Phys & Weather Modificat, Beijing 100081, Peoples R China
关键词
ice crystal habits; transfer learning; deep learning; line scan imager; area scan imager; MICROPHYSICAL PROPERTIES; OPTICAL-PROPERTIES; VIDEO DISDROMETER; IMPACT; IMAGES; PROBE; SHAPE;
D O I
10.3390/atmos16030294
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The habits of cloud particles are a significant factor impacting microphysical processes in clouds. The accurate identification of cloud particle shapes within clouds is a fundamental requirement for calculating various cloud microphysical parameters. In this study, we established a cloud particle image dataset encompassing nine distinct habit categories, totaling 8100 images. These images were captured using three probes with varying resolutions: the Cloud Particle Imager (CPI), the Two-Dimensional Stereo Probe (2D-S), and the High-Volume Precipitation Spectrometer (HVPS). Furthermore, this study performs a comparative analysis of ten different transfer learning (TL) models based on this dataset. It was found that the VGG-16 model exhibits the highest classification accuracy, reaching 97.90%. This model also demonstrates the highest recall, precision, and F1 measure. The results indicate that the VGG-16 model can reliably classify the shapes of ice crystal particles measured by both line scan imagers (2D-S, HVPS) and an area scan imager (CPI).
引用
收藏
页数:17
相关论文
共 61 条
[1]   A review of the light scattering properties of cirrus [J].
Baran, Anthony J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (14-16) :1239-1260
[2]   Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models [J].
Baum, BA ;
Heymsfield, AJ ;
Yang, P ;
Bedka, ST .
JOURNAL OF APPLIED METEOROLOGY, 2005, 44 (12) :1885-1895
[3]   Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology [J].
Baumgardner, D. ;
Brenguier, J. L. ;
Bucholtz, A. ;
Coe, H. ;
DeMott, P. ;
Garrett, T. J. ;
Gayet, J. F. ;
Hermann, M. ;
Heymsfield, A. ;
Korolev, A. ;
Kraemer, M. ;
Petzold, A. ;
Strapp, W. ;
Pilewskie, P. ;
Taylor, J. ;
Twohy, C. ;
Wendisch, M. ;
Bachalo, W. ;
Chuang, P. .
ATMOSPHERIC RESEARCH, 2011, 102 (1-2) :10-29
[4]   Snow event classification with a 2D video disdrometer - A decision tree approach [J].
Bernauer, F. ;
Huerkamp, K. ;
Ruehm, W. ;
Tschiersch, J. .
ATMOSPHERIC RESEARCH, 2016, 172 :186-195
[5]   Improved ice particle optical property simulations in the ultraviolet to far-infrared regime [J].
Bi, Lei ;
Yang, Ping .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 189 :228-237
[6]   Aircraft measurement campaign on summer cloud microphysical properties over the Tibetan Plateau [J].
Chang, Yi ;
Guo, Xueliang ;
Tang, Jie ;
Lu, Guangxian .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]  
Chen Y., 2023, P IEEE 6 INT C COMP
[8]   A tutorial on the cross-entropy method [J].
De Boer, PT ;
Kroese, DP ;
Mannor, S ;
Rubinstein, RY .
ANNALS OF OPERATIONS RESEARCH, 2005, 134 (01) :19-67
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   Hydrometeor classification from two-dimensional video disdrometer data [J].
Grazioli, J. ;
Tuia, D. ;
Monhart, S. ;
Schneebeli, M. ;
Raupach, T. ;
Berne, A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (09) :2869-2882