East Asian dust storm in March 2021: Perspective views from ground observation, satellite measurement and numerical simulation

被引:1
作者
Xue, Yi-Bo [1 ,2 ]
Zhang, Xiao-Xiao [1 ,3 ]
Lei, Jia-Qiang [1 ]
Li, Sheng-Yu [1 ]
Liu, Lian-You [4 ,5 ]
Wang, Zi-Fa [3 ]
Tian, Wen-Jun [1 ,2 ]
Tang, Xiao [3 ]
Chen, Xue-Shun [3 ]
机构
[1] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Ecol Safety & Sustainable Dev Arid L, Urumqi 830011, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atmo, Beijing 100029, Peoples R China
[4] Beijing Normal Univ, Key Lab Environm Change & Nat Disaster, Minist Educ, Beijing 100875, Peoples R China
[5] Qinghai Normal Univ, Key Lab Tibetan Plateau Land Surface Proc & Ecol C, Minist Educ, Xining 810016, Peoples R China
基金
中国国家自然科学基金;
关键词
East Asian dust storm; Air pollution; Dust particulates; Marine ecosystem; Numerical simulation; TRANS-PACIFIC TRANSPORT; ANTHROPOGENIC DUST; DESERT DUST; POLARIZATION LIDAR; NORTH-AMERICA; WIND-SPEED; MIE-RAMAN; AEROSOLS; EVOLUTION; EMISSION;
D O I
10.1016/j.atmosenv.2025.121152
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
During March 13-18, 2021, East Asia experienced the strongest dust storm in the last decade. This windblown dust event caused large-scale dispersion of aerosol pollution, and attracted widespread attention due to its severe impacts on land-atmosphere-marine ecosystems. Here we investigated the dust sources, transport, and deposition of this dust storm and its effects on the Asia-Pacific region by using ground observations, satellite remote sensing products, and numerical simulation. The results showed that the potential aeolian dust source was mainly located in the Gobi Desert in southern Mongolia and central Inner Mongolia. This dust storm generated rapid increases in ambient particle concentrations over northern and eastern China, the Korean peninsula, and southwestern Japan. Air quality in 82% of the studied East Asian cities deteriorated noticeably as a result of mineral dust intensification. The ground-based Mie-scattering lidar detected the long-distance dispersion of dust aerosols in the 3-5 km high altitudes over Seoul, Osaka, Tokyo, and Niigata. Approximately 16.1 Tg of floating dust was deposited in the Northwest Pacific Ocean. The intensity of dust deposition in the East China Sea was almost twice that in the Yellow Sea and the Sea of Japan. Satellite data revealed that dust particles transported remotely from the East Asian desert were deposited in the North Pacific, resulting in an evident increase (55%-86%) in regional chlorophyll-a concentrations within a week after this dust storm event. Marine algal blooms developed quickly in response to the joint effects of atmospheric dry or wet deposition and surface-ocean currents. This study quantitatively assessed the potential influences of this strong East Asian dust storm on the atmospheric and marine environment, providing a multi-angle perspective for investigating the dynamic long-range transport of aerosols and its implications for global dust cycles.
引用
收藏
页数:16
相关论文
共 101 条
[61]  
Ministry of Environmental Protection (MEP) China General Administration of Quality Supervision Inspection and Quarantine (AQSIQ), 2012, Ambient air quality standards (GB 3095-2012)
[62]   Ground-based network observation of Asian dust events of April 1998 in east Asia [J].
Murayama, T ;
Sugimoto, N ;
Uno, I ;
Kinoshita, K ;
Aoki, K ;
Hagiwara, N ;
Liu, ZY ;
Matsui, I ;
Sakai, T ;
Shibata, T ;
Arao, K ;
Sohn, BJ ;
Won, JG ;
Yoon, SC ;
Li, T ;
Zhou, J ;
Hu, HL ;
Abo, M ;
Iokibe, K ;
Koga, R ;
Iwasaka, Y .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D16) :18345-18359
[63]  
NCC (National Climate Center China Meteorological Administration), 2021, China Climate Bulletin, V43-60
[64]   Observation of the simultaneous transport of Asian mineral dust aerosols with anthropogenic pollutants using a POPC during a long-lasting dust event in late spring 2014 [J].
Pan, Xiaole ;
Uno, Itsushi ;
Hara, Yukari ;
Kuribayashi, Masatoshi ;
Kobayashi, Hiroshi ;
Sugimoto, Nobuo ;
Yamamoto, Shigekazu ;
Shimohara, Takaaki ;
Wang, Zifa .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (05) :1593-1598
[65]   Toxicity of atmospheric aerosols on marine phytoplankton [J].
Paytan, Adina ;
Mackey, Katherine R. M. ;
Chen, Ying ;
Lima, Ivan D. ;
Doney, Scott C. ;
Mahowald, Natalie ;
Labiosa, Rochelle ;
Postf, Anton F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (12) :4601-4605
[66]   Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP [J].
Proestakis, Emmanouil ;
Amiridis, Vassilis ;
Marinou, Eleni ;
Georgoulias, Aristeidis K. ;
Solomos, Stavros ;
Kazadzis, Stelios ;
Chimot, Julien ;
Che, Huizheng ;
Alexandri, Georgia ;
Binietoglou, Ioannis ;
Daskalopoulou, Vasiliki ;
Kourtidis, Konstantinos A. ;
de Leeuw, Gerrit ;
Ronald, J. van der A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (02) :1337-1362
[67]   MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications [J].
Rienecker, Michele M. ;
Suarez, Max J. ;
Gelaro, Ronald ;
Todling, Ricardo ;
Bacmeister, Julio ;
Liu, Emily ;
Bosilovich, Michael G. ;
Schubert, Siegfried D. ;
Takacs, Lawrence ;
Kim, Gi-Kong ;
Bloom, Stephen ;
Chen, Junye ;
Collins, Douglas ;
Conaty, Austin ;
Da Silva, Arlindo ;
Gu, Wei ;
Joiner, Joanna ;
Koster, Randal D. ;
Lucchesi, Robert ;
Molod, Andrea ;
Owens, Tommy ;
Pawson, Steven ;
Pegion, Philip ;
Redder, Christopher R. ;
Reichle, Rolf ;
Robertson, Franklin R. ;
Ruddick, Albert G. ;
Sienkiewicz, Meta ;
Woollen, Jack .
JOURNAL OF CLIMATE, 2011, 24 (14) :3624-3648
[68]   Global and regional evolution of sea surface temperature under climate change [J].
Ruela, R. ;
Sousa, M. C. ;
deCastro, M. ;
Dias, J. M. .
GLOBAL AND PLANETARY CHANGE, 2020, 190
[69]  
SASSEN K, 1991, B AM METEOROL SOC, V72, P1848, DOI 10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO
[70]  
2