Approaching infinite selectivity in membrane-based aqueous lithium extraction via solid-state ion transport

被引:10
作者
Patel, Sohum K. [1 ]
Iddya, Arpita [1 ,2 ]
Pan, Weiyi [1 ,2 ]
Qian, Jianhao [1 ,2 ]
Elimelech, Menachem [1 ,2 ,3 ,4 ]
机构
[1] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA
[2] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[4] Rice WaTER Inst, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
EXCHANGE MEMBRANES; HYDRATION STRUCTURE; RECOVERY; ENERGY; CONDUCTIVITY; DIFFUSION; WATER; EXPLOITATION; MECHANISMS; SOLVATION;
D O I
10.1126/sciadv.adq9823
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the gap between lithium supply and demand continues to widen, the need to develop ion-selective technologies, which can efficiently extract lithium from unconventional water sources, grows increasingly crucial. In this study, we investigated the fundamentals of applying a solid-state electrolyte (SSE), typically used in battery technologies, as a membrane material for aqueous lithium extraction. We find that the anhydrous hopping of lithium ions through the ordered and confined SSE lattice is highly distinct from ion migration through the hydrated free volumes of conventional nanoporous membranes, thus culminating in unique membrane transport properties. Notably, we reveal that the SSE provides unparalleled performance with respect to ion-ion selectivity, consistently demonstrating lithium ion selectivity values that are immeasurable by even the part-per-billion detection limit of mass spectrometry. Such exceptional selectivity is shown to be the result of the characteristic size and charge exclusion mechanisms of solid-state ion transport, which may be leveraged in the design of next-generation membranes for resource recovery.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Structure of the Solid-State Electrolyte Li3+2xP1-xAlxS4: Lithium-Ion Transport Properties in Crystalline vs Glassy Phases [J].
Ramos, Erika P. ;
Bazak, J. David ;
Assoud, Abdeljalil ;
Huq, Ashfia ;
Goward, Gillian ;
Nazar, Linda F. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (51) :56767-56779
[42]   Constructing the high-areal-capacity, solid-state Li polymer battery via the multiscale ion transport pathway design [J].
Zhang, Min ;
Zhou, Kefan ;
Ma, Donghao ;
Wang, Helin ;
Tang, Xiaoyu ;
Bai, Miao ;
Liu, Fu ;
Wang, Zhiqiao ;
Ma, Yue .
MATERIALS TODAY, 2022, 56 :53-65
[43]   Porphyrin-framed PAF Based Single-Ion Lithium Salt Boosting Quasi Solid-State Lithium-Ion Battery Performance at Low Temperatures [J].
Yu, Mengxuan ;
Liu, Yuhan ;
Wang, Liying ;
Cui, Fengchao ;
Liu, Baijun ;
Hu, Wei ;
Lu, Yunfeng ;
Zhu, Guangshan .
ADVANCED ENERGY MATERIALS, 2025, 15 (17)
[44]   Three-Dimensional Continuous Ion Transport Skeleton-Reinforced Composite Solid Electrolyte for High-Performance Solid-State Lithium Metal Batteries [J].
Liu, Jian ;
Pei, Liu ;
Li, Jianling .
ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (22) :33002-33014
[45]   Effect of fluorinated polymer matrix type in the performance of solid polymer electrolytes based on ionic liquids for solid-state lithium-ion batteries [J].
Barbosa, Joao C. ;
Pinto, Rafael S. ;
Correia, Daniela M. ;
Fidalgo-Marijuan, Arkaitz ;
Silva, Maria M. ;
Goncalves, Renato ;
Lanceros-Mendez, Senentxu ;
Costa, Carlos M. .
CHEMICAL ENGINEERING JOURNAL, 2023, 478
[46]   Solid-State High-Resolution NMR Studies on PEO-Based Crystalline Solid Polymer Electrolytes for Lithium-Ion Battery [J].
Peng, Bo ;
Yao, Yefeng ;
Chen, Qun ;
Hu, Bingwen .
ANNUAL REPORTS ON NMR SPECTROSCOPY, VOL 85, 2015, 85 :1-26
[47]   Ion transport limitations in all-solid-state lithium battery electrodes containing a sulfide-based electrolyte [J].
Kaiser, N. ;
Spannenberger, S. ;
Schmitt, M. ;
Cronau, M. ;
Kato, Y. ;
Roling, B. .
JOURNAL OF POWER SOURCES, 2018, 396 :175-181
[48]   Performance study of sodium alginate (SA) with lithium chloride (LiCl)-based solid-state membrane as an electrolyte in electrochemical device application [J].
Hazaana, S. Aafrin ;
Ancemma, Joseph ;
Selvasekarapandian, S. ;
Naachiyar, R. Meera ;
Balasubramanian, G. ;
Arunkumar, Dorai ;
Nithya, Hellar ;
Vignesh, N. Muniraj .
IONICS, 2024, 30 (03) :1413-1435
[49]   Sandwich-Like Poly(propylene carbonate)-Based Electrolyte for Ambient-Temperature Solid-State Lithium Ion Batteries [J].
Yue, Hongyun ;
Li, Jingxian ;
Wang, Qiuxian ;
Li, Chengbin ;
Zhang, Jian ;
Li, Qianhui ;
Li, Xiangnan ;
Zhang, Huishuang ;
Yang, Shuting .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (01) :268-274
[50]   Advances in the application of ionic liquids in PEO-based lithium-ion solid-state electrolytes: from the perspective of fillers [J].
Ai, Changchun ;
Shu, Yilei ;
Zhao, Ziheng ;
Guo, Huijuan ;
Chen, Shangqing ;
Yi, Qun .
JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (19) :13632-13656