Evaluating the prognostic value of radiomics and clinical features in metastatic prostate cancer using [68Ga]Ga-PSMA-11 PET/CT

被引:0
作者
Molin, Kaylee [1 ,2 ,3 ]
Barry, Nathaniel [1 ,2 ]
Gill, Suki [3 ,4 ]
Hassan, Ghulam Mubashar [1 ]
Francis, Roslyn J. [5 ,6 ]
Ong, Jeremy S. L. [7 ]
Ebert, Martin A. [1 ,2 ,3 ]
Kendrick, Jake [1 ,2 ]
机构
[1] Univ Western Australia, Sch Phys Math & Comp, Crawley, WA, Australia
[2] Ctr Adv Technol Canc Res CATCR, Perth, WA, Australia
[3] Sir Charles Gairdner Hosp, Dept Radiat Oncol, Nedlands, WA, Australia
[4] Univ Western Australia, Sch Allied Hlth, Crawley, WA, Australia
[5] Sir Charles Gairdner Hosp, Dept Nucl Med, Nedlands, WA, Australia
[6] Univ Western Australia, Med Sch, Crawley, WA, Australia
[7] Fiona Stanley Hosp, Dept Nucl Med, Murdoch, WA, Australia
关键词
Radiomics; PSMA PET; Prostate cancer; Prognostic biomarkers; POSITRON-EMISSION-TOMOGRAPHY; IMAGES;
D O I
10.1007/s13246-024-01516-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Prostate cancer is a significant global health issue due to its high incidence and poor outcomes in metastatic disease. This study aims to develop models predicting overall survival for patients with metastatic biochemically recurrent prostate cancer, potentially helping to identify high-risk patients and enabling more tailored treatment options. A multi-centre cohort of 180 such patients underwent [68Ga]Ga-PSMA-11 PET/CT scans, with lesions semi-automatically segmented and radiomic features extracted from lesions. The analysis included two phases: univariable and multivariable. Univariable analysis used Kaplan-Meier curves and Cox proportional hazards models to correlate individual features with overall survival. Multivariable analysis used the LASSO Cox proportional hazards method to create 13 models: radiomics-only, clinical-only, and various combinations of radiomic and clinical features. Each model included six features and was bootstrapped 1000 times to obtain concordance indices with 95% confidence intervals, followed by optimism correction. In the univariable analysis, 6 out of 8 clinical features and 68 out of 89 radiomic features were significantly correlated with overall survival, including age, disease stage, total lesional uptake and total lesional volume. The optimism-corrected concordance indices from the multivariable models were 0.722 (95% CI 0.653-0.784) for the clinical model, 0.681 (95% CI 0.616-0.745) for the radiomics model, and 0.704 (95% CI 0.648-0.768) for the combined model with three clinical and three radiomic features, when extracting radiomic features from the largest lesion only. While univariable analysis showed significant prognostic value for many radiomic features, their integration into multivariable models did not improve predictive accuracy beyond clinical features alone.
引用
收藏
页码:329 / 341
页数:13
相关论文
共 50 条
[1]   The use of molecular volumetric parameters for the evaluation of Lu-177 PSMA I&T therapy response and survival [J].
Acar, Emine ;
Ozdogan, Ozhan ;
Aksu, Aysegul ;
Derebek, Erkan ;
Bekis, Recep ;
Kaya, Gamze Capa .
ANNALS OF NUCLEAR MEDICINE, 2019, 33 (09) :681-688
[2]   Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients [J].
Afshar-Oromieh, Ali ;
Holland-Letz, Tim ;
Giesel, Frederik L. ;
Kratochwil, Clemens ;
Mier, Walter ;
Haufe, Sabine ;
Debus, Nils ;
Eder, Matthias ;
Eisenhut, Michael ;
Schaefer, Martin ;
Neels, Oliver ;
Hohenfellner, Markus ;
Kopka, Klaus ;
Kauczor, Hans-Ulrich ;
Debus, Juergen ;
Haberkorn, Uwe .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (08) :1258-1268
[3]   Quantifying heterogeneity in human tumours using MRI and PET [J].
Asselin, Marie-Claude ;
O'Connor, James P. B. ;
Boellaard, Ronald ;
Thacker, Neil A. ;
Jackson, Alan .
EUROPEAN JOURNAL OF CANCER, 2012, 48 (04) :447-455
[4]   Positron emission tomography (PET) in primary prostate cancer staging and risk assessment [J].
Bednarova, Sandra ;
Lindenberg, Maria L. ;
Vinsensia, Maria ;
Zuiani, Chiara ;
Choyke, Peter L. ;
Turkbey, Baris .
TRANSLATIONAL ANDROLOGY AND UROLOGY, 2017, 6 (03) :413-423
[5]   Predicting cancer outcomes with radiomics and artificial intelligence in radiology [J].
Bera, Kaustav ;
Braman, Nathaniel ;
Gupta, Amit ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) :132-146
[6]   Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Bray, Freddie ;
Laversanne, Mathieu ;
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2024, 74 (03) :229-263
[7]   Prognostic Value of 18F-FDG PET Radiomics Features at Baseline in PET-Guided Consolidation Strategy in Diffuse Large B-Cell Lymphoma: A Machine-Learning Analysis from the GAINED Study [J].
Carlier, Thomas ;
Frecon, Gauthier ;
Mateus, Diana ;
Rizkallah, Mira ;
Kraeber-Bodere, Francoise ;
Kanoun, Salim ;
Blanc-Durand, Paul ;
Itti, Emmanuel ;
Le Gouill, Steven ;
Casasnovas, Rene-Olivier ;
Bodet-Milin, Caroline ;
Bailly, Clement .
JOURNAL OF NUCLEAR MEDICINE, 2024, 65 (01) :156-162
[8]   E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET [J].
Ceci, Francesco ;
Oprea-Lager, Daniela E. ;
Emmett, Louise ;
Adam, Judit A. ;
Bomanji, Jamshed ;
Czernin, Johannes ;
Eiber, Matthias ;
Haberkorn, Uwe ;
Hofman, Michael S. ;
Hope, Thomas A. ;
Kumar, Rakesh ;
Rowe, Steven P. ;
Schwarzenboeck, Sarah M. ;
Fanti, Stefano ;
Herrmann, Ken .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (05) :1626-1638
[9]   Comparison of radiomic feature aggregation methods for patients with multiple tumors [J].
Chang, Enoch ;
Joel, Marina ;
Chang, Hannah Y. ;
Du, Justin ;
Khanna, Omaditya ;
Omuro, Antonio ;
Chiang, Veronica ;
Aneja, Sanjay .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]  
Davidson-Pilon C., 2019, J. Open Source Softw., V4, P1317, DOI [DOI 10.21105/JOSS.01317, 10.21105/joss.01317]