A Diffusion Model for Traffic Data Imputation

被引:0
作者
Lu, Bo [1 ,2 ]
Miao, Qinghai [1 ]
Liu, Yahui [3 ,4 ]
Tamir, Tariku Sinshaw [3 ,5 ]
Zhao, Hongxia [3 ]
Zhang, Xiqiao [6 ]
Lv, Yisheng [3 ]
Wang, Fei-Yue [3 ]
机构
[1] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[2] Baidu Inc, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
[4] Meituan, Beijing 100050, Peoples R China
[5] Guangdong Univ Technol, Guangzhou 510520, Peoples R China
[6] Harbin Inst Technol, Sch Transportat Sci & Technol, Dept Transportat Engn, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Image synthesis; Electricity; Time series analysis; Predictive models; Feature extraction; Imputation; Data models; Intelligent transportation systems; Data imputation; diffusion model; implicit feature; time series; traffic data; PREDICTION;
D O I
10.1109/JAS.2024.124611
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems (ITS) in the real world. As a state-of-the-art generative model, the diffusion model has proven highly successful in image generation, speech generation, time series modelling etc. and now opens a new avenue for traffic data imputation. In this paper, we propose a conditional diffusion model, called the implicit-explicit diffusion model, for traffic data imputation. This model exploits both the implicit and explicit feature of the data simultaneously. More specifically, we design two types of feature extraction modules, one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series. This approach not only inherits the advantages of the diffusion model for estimating missing data, but also takes into account the multi-scale correlation inherent in traffic data. To illustrate the performance of the model, extensive experiments are conducted on three real-world time series datasets using different missing rates. The experimental results demonstrate that the model improves imputation accuracy and generalization capability.
引用
收藏
页码:606 / 617
页数:12
相关论文
共 64 条
  • [21] Diverse Deep Matrix Factorization with Hypergraph Regularization for Multi-View Data Representation
    Huang, Haonan
    Zhou, Guoxu
    Liang, Naiyao
    Zhao, Qibin
    Xie, Shengli
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (11) : 2154 - 2167
  • [22] Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data
    Hudak, Andrew T.
    Crookston, Nicholas L.
    Evans, Jeffrey S.
    Hall, David E.
    Falkowski, Michael J.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) : 2232 - 2245
  • [23] Big Data and Its Technical Challenges
    Jagadish, H. V.
    Gehrke, Johannes
    Labrinidis, Alexandros
    Papakonstantinou, Yannis
    Patel, Jignesh M.
    Ramakrishnan, Raghu
    Shahabi, Cyrus
    [J]. COMMUNICATIONS OF THE ACM, 2014, 57 (07) : 86 - 94
  • [24] Augmented Industrial Data-Driven Modeling Under the Curse of Dimensionality
    Jiang, Xiaoyu
    Kong, Xiangyin
    Ge, Zhiqiang
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (06) : 1445 - 1461
  • [25] Kantardzic M.., 2003, Technometrics, V45, P277, DOI [10.1198/tech.2003.s785, DOI 10.1198/TECH.2003.S785]
  • [26] Kong Zhifeng, 2020, arXiv, DOI 10.48550/arXiv.2009.09761
  • [27] Road Traffic Forecasting: Recent Advances and New Challenges
    Lana, Ibai
    Del Ser, Javier
    Velez, Manuel
    Vlahogianni, Eleni I.
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2018, 10 (02) : 93 - 109
  • [28] Li YG, 2018, Arxiv, DOI arXiv:1707.01926
  • [29] A Comparison of Detrending Models and Multi-Regime Models for Traffic Flow Prediction
    Li, Zhiheng
    Li, Yuebiao
    Li, Li
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2014, 6 (04) : 34 - 44
  • [30] Self-Learning of Multivariate Time Series Using Perceptually Important Points
    Lintonen, Timo
    Raty, Tomi
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (06) : 1318 - 1331