Universal dissipative dynamics in strongly correlated quantum gases

被引:0
|
作者
Zhao, Yajuan [1 ,2 ]
Tian, Ye [1 ,2 ]
Ye, Jilai [1 ,2 ]
Wu, Yue [2 ,3 ]
Zhao, Zihan [1 ,2 ]
Chi, Zhihao [1 ,2 ]
Tian, Tian [1 ,2 ]
Yao, Hepeng [4 ]
Hu, Jiazhong [1 ,2 ,5 ]
Chen, Yu [6 ]
Chen, Wenlan [1 ,2 ,7 ,8 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing, Peoples R China
[2] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing, Peoples R China
[3] Tsinghua Univ, Inst Adv Study, Beijing, Peoples R China
[4] Univ Geneva, DQMP, Geneva, Switzerland
[5] Beijing Acad Quantum Informat Sci, Beijing, Peoples R China
[6] China Acad Engn Phys, Grad Sch, Beijing, Peoples R China
[7] Frontier Sci Ctr Quantum Informat, Beijing, Peoples R China
[8] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
基金
中国国家自然科学基金; 瑞士国家科学基金会;
关键词
PHASE-TRANSITION; SCATTERING; STATE;
D O I
10.1038/s41567-025-02800-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dissipation is an unavoidable feature of quantum systems, typically associated with decoherence and the modification of quantum correlations. In the study of strongly correlated quantum matter, we often have to overcome or suppress dissipation to uncover the underlying quantum phenomena. However, here we demonstrate that dissipation can serve as a probe for intrinsic correlations in quantum many-body systems. Applying tunable dissipation in ultracold atomic systems, we observe universal dissipative dynamics in strongly correlated one-dimensional quantum gases. Specifically, we find a universal stretched-exponential decay of the total particle number, where the stretched exponent measures the anomalous dimension of the spectral function-a parameter for characterizing strong quantum fluctuations. This approach offers a versatile framework for probing features of strongly correlated systems, including spin-charge separation and Fermi arcs in quantum materials.
引用
收藏
页码:530 / 535
页数:13
相关论文
共 50 条
  • [31] Breakdown of the Quantum Distinction of Regular and Chaotic Classical Dynamics in Dissipative Systems
    Villasenor, David
    Santos, Lea F.
    Barberis-Blostein, Pablo
    PHYSICAL REVIEW LETTERS, 2024, 133 (24)
  • [32] Observation of correlated spin-orbit order in a strongly anisotropic quantum wire system
    Brand, C.
    Pfnuer, H.
    Landolt, G.
    Muff, S.
    Dil, J. H.
    Das, Tanmoy
    Tegenkamp, Christoph
    NATURE COMMUNICATIONS, 2015, 6
  • [33] Strongly interacting Fermi gases
    Zwerger, W.
    QUANTUM MATTER AT ULTRALOW TEMPERATURES, 2016, 191 : 63 - 141
  • [34] Boundary-induced singularity in strongly-correlated quantum systems at finite temperature
    Wang, Ding-Zu
    Zhang, Guo-Feng
    Lewenstein, Maciej
    Ran, Shi-Ju
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01)
  • [35] Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations
    Li, Tianqi
    Patz, Aaron
    Mouchliadis, Leonidas
    Yan, Jiaqiang
    Lograsso, Thomas A.
    Perakis, Ilias E.
    Wang, Jigang
    NATURE, 2013, 496 (7443) : 69 - 73
  • [36] Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems
    Lange, Hannah
    Bornet, Guillaume
    Emperauger, Gabriel
    Chen, Cheng
    Lahaye, Thierry
    Kienle, Stefan
    Browaeys, Antoine
    Bohrdt, Annabelle
    QUANTUM, 2025, 9
  • [37] Josephson dynamics of strongly interacting superfluid Fermi gases in double-well potentials
    Li, Ji
    Wen, Wen
    Zhang, Yuke
    Ma, Xiaodong
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (01):
  • [38] MASS-ENERGY THRESHOLD DYNAMICS FOR DIPOLAR QUANTUM GASES
    Van Duong Dinh
    Forcella, Luigi
    Hajaiej, Hichem
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (01) : 165 - 200
  • [39] Dissipative quantum repeater
    Ghasemi, M.
    Tavassoly, M. K.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
  • [40] Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics
    Zhang, Yu
    Yam, ChiYung
    Chen, GuanHua
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (16)