Micromolecule Postdeposition Process for Highly Efficient Inverted Perovskite Solar Cells

被引:0
|
作者
Li, Bing'e [1 ]
Xing, Jiangping [1 ]
Budnik, Valeriya [2 ]
Liu, Chuangping [1 ]
Cao, Qinghua [1 ]
Xie, Fobao [1 ]
Zhang, Xiaoli [1 ]
Liu, Hui [1 ]
Stsiapanau, Andrei [2 ]
Sun, Xiao Wei [3 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangdong Prov Key Lab Sensing Phys & Syst Integra, Guangzhou 510006, Peoples R China
[2] Belarusian State Univ Informat & Radioelect BSUIR, Dept Micro & Nanoelect, Minsk 220013, BELARUS
[3] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
关键词
micromolecule postdeposition process; reducing vacanciesat the interface; hole transport layer; facilitatingthe growth of perovskites; perovskites solar cells; PERFORMANCE; LAYER;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inverted perovskite solar cells (PSCs) have achieved great development, contributed by the advance of self-assembled monolayer (SAM) hole-transporting layers (HTLs) due to their distinctive molecular designability. However, SAM HTLs still present challenges of achieving a compact and ordered surface, resulting in vacancies and defects at the interface as well as adversely affecting the growth of perovskites. In this work, we propose a micromolecule postdeposition process to design the SAM HTL interface and form high-quality perovskites to achieve highly efficient inverted PSCs. We introduce etidronic acid (EA) as a postdeposition micromolecule to fill and reduce vacancies at the SAM interface and to improve growing high-quality perovskites. The postdeposition EA can anchor to the substrate through P-OH anchors, occupying vacancies left by MeO-4PACz, and simultaneously create interaction with perovskites by P=O and C-OH functional groups. The micromolecule postdeposition process effectively fills and reduces vacancies at the SAM interface, passivates defects of perovskites, and facilitates carrier transport. Consequently, a champion PCE of 24.42% is achieved for the target PSCs, which is much higher than the efficiency (20.08%) of the control. This research provides a guided and widely applicable strategy for the development of the SAM interface and further advances the performance of PSCs.
引用
收藏
页码:14269 / 14277
页数:9
相关论文
共 50 条
  • [41] Facile precursor stoichiometry engineering for efficient inverted perovskite solar cells without any dopants
    Fan, Baojin
    He, Zhen
    Xiong, Jian
    Zhao, Qian
    Dai, Zhongjun
    Zhang, Zheling
    Xue, Xiaogang
    Yang, Junliang
    Yang, Bingchu
    Zhang, Jian
    ORGANIC ELECTRONICS, 2019, 75
  • [42] Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials
    Gong, Xiu
    Sun, Qiang
    Liu, Shuangshuang
    Liao, Peizhe
    Shen, Yan
    Graetzel, Carole
    Zakeeruddin, Shaik M.
    Graetzel, Michael
    Wang, Mingkui
    NANO LETTERS, 2018, 18 (06) : 3969 - 3977
  • [43] Simultaneous Bulk and Surface Defect Passivation for Efficient Inverted Perovskite Solar Cells
    Tang, Senlin
    Peng, Ying
    Zhu, Zheng
    Zong, Jiawei
    Zhao, Lian
    Yu, Longsheng
    Chen, Runfeng
    Li, Mingguang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (23) : 5116 - 5122
  • [44] Lithium Polystyrene Sulfonate as a Hole Transport Material in Inverted Perovskite Solar Cells
    Khawaja, Kausar Ali
    Khan, Yeasin
    Park, Yu Jung
    Lee, Jin Hee
    Kang, Ju Hwan
    Kim, Kiwoong
    Yi, Yeonjin
    Seo, Jung Hwa
    Walker, Bright
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (20) : 3151 - 3161
  • [45] Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells
    Cai, Yuan
    Cui, Jian
    Chen, Ming
    Zhang, Miaomiao
    Han, Yu
    Qian, Fang
    Zhao, Huan
    Yang, Shaomin
    Yang, Zhou
    Bian, Hongtao
    Wang, Tao
    Guo, Kunpeng
    Cai, Molang
    Dai, Songyuan
    Liu, Zhike
    Liu, Shengzhong
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (07)
  • [46] Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhao, Chenxu
    Zhang, Hong
    Krishna, Anurag
    Xu, Jia
    Yao, Jianxi
    ADVANCED OPTICAL MATERIALS, 2024, 12 (07)
  • [47] Effective Multifunctional Additive Engineering for Efficient and Stable Inverted Perovskite Solar Cells
    Li, Fuqiang
    Huang, Xiaofeng
    Xue, Junpeng
    Liu, Fengwu
    Kim, Danbi
    Yang, Hyun-Seock
    Yang, Eunhye
    Shin, Insoo
    Kim, Junghwan
    Lee, Bo Ram
    Park, Sung Heum
    SOLAR RRL, 2022, 6 (11)
  • [48] Highly Efficient Perovskite Solar Cells via Nickel Passivation
    Gong, Xiu
    Guan, Li
    Pan, Haiping
    Sun, Qiang
    Zhao, Xiaojuan
    Li, Hao
    Pan, Han
    Shen, Yan
    Shao, Yong
    Sun, Lijie
    Cui, Zhifang
    Ding, Liming
    Wang, Mingkui
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (50)
  • [49] Buried solvent assisted perovskite crystallization for efficient and stable inverted solar cells
    Wang, Yu
    Song, Jiaxing
    Chu, Liang
    Zang, Yue
    Tu, Yibo
    Ye, Jingchuan
    Jin, Yingzhi
    Li, Guodong
    Li, Zaifang
    Yan, Wensheng
    JOURNAL OF POWER SOURCES, 2023, 558
  • [50] A Facile Air-Retreatment Strategy for Efficient Inverted Perovskite Solar Cells
    Dai, Zhongjun
    Xiong, Jian
    Zhan, Shiping
    Fan, Baojin
    Zhao, Qian
    Liu, Weizhi
    He, Zhen
    Yang, Bingchu
    Yang, Junliang
    Xue, Xiaogang
    Zhang, Jian
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (06):