Micromolecule Postdeposition Process for Highly Efficient Inverted Perovskite Solar Cells

被引:0
|
作者
Li, Bing'e [1 ]
Xing, Jiangping [1 ]
Budnik, Valeriya [2 ]
Liu, Chuangping [1 ]
Cao, Qinghua [1 ]
Xie, Fobao [1 ]
Zhang, Xiaoli [1 ]
Liu, Hui [1 ]
Stsiapanau, Andrei [2 ]
Sun, Xiao Wei [3 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangdong Prov Key Lab Sensing Phys & Syst Integra, Guangzhou 510006, Peoples R China
[2] Belarusian State Univ Informat & Radioelect BSUIR, Dept Micro & Nanoelect, Minsk 220013, BELARUS
[3] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
关键词
micromolecule postdeposition process; reducing vacanciesat the interface; hole transport layer; facilitatingthe growth of perovskites; perovskites solar cells; PERFORMANCE; LAYER;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inverted perovskite solar cells (PSCs) have achieved great development, contributed by the advance of self-assembled monolayer (SAM) hole-transporting layers (HTLs) due to their distinctive molecular designability. However, SAM HTLs still present challenges of achieving a compact and ordered surface, resulting in vacancies and defects at the interface as well as adversely affecting the growth of perovskites. In this work, we propose a micromolecule postdeposition process to design the SAM HTL interface and form high-quality perovskites to achieve highly efficient inverted PSCs. We introduce etidronic acid (EA) as a postdeposition micromolecule to fill and reduce vacancies at the SAM interface and to improve growing high-quality perovskites. The postdeposition EA can anchor to the substrate through P-OH anchors, occupying vacancies left by MeO-4PACz, and simultaneously create interaction with perovskites by P=O and C-OH functional groups. The micromolecule postdeposition process effectively fills and reduces vacancies at the SAM interface, passivates defects of perovskites, and facilitates carrier transport. Consequently, a champion PCE of 24.42% is achieved for the target PSCs, which is much higher than the efficiency (20.08%) of the control. This research provides a guided and widely applicable strategy for the development of the SAM interface and further advances the performance of PSCs.
引用
收藏
页码:14269 / 14277
页数:9
相关论文
共 50 条
  • [21] A Review of the Technological Advances in the Design of Highly Efficient Perovskite Solar Cells
    Njema, George G. G.
    Kibet, Joshua K. K.
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2023, 2023
  • [22] Multi-functional thermal management for efficient and stable inverted perovskite solar cells
    Zhang, Yongsong
    He, Zhen
    Xiong, Jian
    Zhan, Shiping
    Liu, Fu
    Su, Meng
    Wang, Dongjie
    Huang, Yu
    Liao, Qiaogan
    Lu, Jiangrong
    Zhang, Zheling
    Yuan, Changlai
    Wang, Jiang
    Dai, Qilin
    Zhang, Jian
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (17) : 10369 - 10384
  • [23] Small Molecular Organic Hole Transport Layer for Efficient Inverted Perovskite Solar Cells
    Ahmmed, Shamim
    Karim, Md. Abdul
    He, Yulu
    Cao, Siliang
    Kayesh, Md. Emrul
    Matsuishi, Kiyoto
    Islam, Ashraful
    SOLAR RRL, 2025,
  • [24] Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells
    Wang, Changlei
    Xiao, Chuanxiao
    Yu, Yue
    Zhao, Dewei
    Awni, Rasha A.
    Grice, Corey R.
    Ghimire, Kiran
    Constantinou, Iordania
    Liao, Weiqiang
    Cimaroli, Alexander J.
    Liu, Pei
    Chen, Jing
    Podraza, Nikolas J.
    Jiang, Chun-Sheng
    Al-Jassim, Mowafak M.
    Zhao, Xingzhong
    Yan, Yanfa
    ADVANCED ENERGY MATERIALS, 2017, 7 (17)
  • [25] Methodologies toward Highly Efficient Perovskite Solar Cells
    Seok, Sang Il
    Gratzel, Michael
    Park, Nam-Gyu
    SMALL, 2018, 14 (20)
  • [26] Key issues in highly efficient perovskite solar cells
    Yang Xu-Dong
    Chen Han
    Bi En-Bing
    Han Li-Yuan
    ACTA PHYSICA SINICA, 2015, 64 (03)
  • [27] Bilateral energy level tuning for efficient inverted perovskite solar cells
    Cai, Xinhang
    Wang, Xianzhao
    Song, Yuting
    Ge, Haoyu
    Li, Aijun
    Zhao, Qingyuan
    Liu, Ziyan
    Shibayama, Naoyuki
    Zheng, Yisong
    Wang, Xiao-Feng
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [28] Efficient inverted perovskite solar cells with CuSeCN as the hole transport material
    Zhao, Ke
    Li, Yaru
    Cheng, Haoliang
    Hu, Ke
    Wang, Zhong-Sheng
    JOURNAL OF POWER SOURCES, 2020, 472
  • [29] Ultrathin Hole Extraction Layer for Efficient Inverted Perovskite Solar Cells
    Liu, Dianyi
    Wang, Qiong
    Elinski, Mark
    Chen, Pei
    Traverse, Christopher J.
    Yang, Chenchen
    Young, Margaret
    Hamann, Thomas W.
    Lunt, Richard R.
    ACS OMEGA, 2018, 3 (06): : 6339 - 6345
  • [30] A Comprehensive Review of Organic Hole-Transporting Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Duan, Yuwei
    Chen, Yu
    Wu, Yihui
    Liu, Zhike
    Liu, Shengzhong
    Peng, Qiang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (25)