Bayesian modelling for the integration of spatially misaligned health and environmental data

被引:0
作者
Alahmadi, Hanan [1 ,2 ]
Moraga, Paula [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Stat Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[2] King Saud Univ KSU, Stat & Operat Res Dept, Riyadh 11564, Saudi Arabia
关键词
Bayesian modelling; Spatial misalignment; Gaussian random field; Disease mapping; Air pollution; AIR-POLLUTION; EXPOSURE;
D O I
10.1007/s00477-025-02927-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The analyses of spatially misaligned data sets are on the rise, primarily due to advancements in data collection and merging of databases. This paper presents a flexible and fast Bayesian modelling framework for the combination of data available at different spatial resolutions and from various sources. Inference is performed using INLA and SPDE, which provides a fast approach to fit latent Gaussian models proving particularly advantageous when dealing with spatial and large datasets. The Bayesian modelling approach is demonstrated in a range of health and environmental settings. Specifically, a spatial model is developed to combine point and areal malaria prevalence data, and to integrate air pollution data from different sources. These examples illustrate how to manage data at disparate spatial scales to yield more precise predictions and improved estimation of associations. A spatial model is also specified to estimate the relative risk of lung cancer and assess its relationship with covariates that are misaligned with the response variable. This showcases the model's ability to effectively synthesize misaligned health outcomes and environmental exposure data. These case studies highlight the adaptability of Bayesian spatial methods in overcoming the challenges posed by spatial data misalignment, thus providing valuable insights for decision-making in health and environmental fields.
引用
收藏
页码:1485 / 1499
页数:15
相关论文
共 57 条
[1]   Model-Based Geostatistics Under Spatially Varying Preferential Sampling [J].
Amaral, Andre Victor Ribeiro ;
Krainski, Elias Teixeira ;
Zhong, Ruiman ;
Moraga, Paula .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024, 29 (04) :766-792
[2]  
Amini H, 2023, Annual Mean PM2.5 Components (EC, NH4, NO3, OC, SO4) 50m Urban and 1km Non-Urban Area Grids for Contiguous U.S., 2000-2019 v1
[3]   The economic burden of malaria: a systematic review [J].
Andrade, Monica V. ;
Noronha, Kenya ;
Diniz, Bernardo P. C. ;
Guedes, Gilvan ;
Carvalho, Lucas R. ;
Silva, Valeria A. ;
Calazans, Julia A. ;
Santos, Andre S. ;
Silva, Daniel N. ;
Castro, Marcia C. .
MALARIA JOURNAL, 2022, 21 (01)
[4]  
[Anonymous], 2013, Global Burden of Disease
[5]  
[Anonymous], 2003, Hierarchical Modeling and Analysis for Spatial Data
[6]   Spatiotemporal mapping of malaria prevalence in Madagascar using routine surveillance and health survey data [J].
Arambepola, Rohan ;
Keddie, Suzanne H. ;
Collins, Emma L. ;
Twohig, Katherine A. ;
Amratia, Punam ;
Bertozzi-Villa, Amelia ;
Chestnutt, Elisabeth G. ;
Harris, Joseph ;
Millar, Justin ;
Rozier, Jennifer ;
Rumisha, Susan F. ;
Symons, Tasmin L. ;
Vargas-Ruiz, Camilo ;
Andriamananjara, Mauricette ;
Rabeherisoa, Saraha ;
Ratsimbasoa, Arsene C. ;
Howes, Rosalind E. ;
Weiss, Daniel J. ;
Gething, Peter W. ;
Cameron, Ewan .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   Global Epidemiology of Lung Cancer [J].
Barta, Julie A. ;
Powell, Charles A. ;
Wisnivesky, Juan P. .
ANNALS OF GLOBAL HEALTH, 2019, 85 (01)
[8]   Long-term Exposure to Air Pollution and Cardiovascular Mortality An Analysis of 22 European Cohorts [J].
Beelen, Rob ;
Stafoggia, Massimo ;
Raaschou-Nielsen, Ole ;
Andersen, Zorana Jovanovic ;
Xun, Wei W. ;
Katsouyanni, Klea ;
Dimakopoulou, Konstantina ;
Brunekreef, Bert ;
Weinmayr, Gudrun ;
Hoffmann, Barbara ;
Wolf, Kathrin ;
Samoli, Evangelia ;
Houthuijs, Danny ;
Nieuwenhuijsen, Mark ;
Oudin, Anna ;
Forsberg, Bertil ;
Olsson, David ;
Salomaa, Veikko ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Oftedal, Bente ;
Aamodt, Geir ;
Nafstad, Per ;
De Faire, Ulf ;
Pedersen, Nancy L. ;
Ostenson, Claes-Goran ;
Fratiglioni, Laura ;
Penell, Johanna ;
Korek, Michal ;
Pyko, Andrei ;
Eriksen, Kirsten Thorup ;
Tjonneland, Anne ;
Becker, Thomas ;
Eeftens, Marloes ;
Bots, Michiel ;
Meliefste, Kees ;
Wang, Meng ;
Bueno-de-Mesquita, Bas ;
Sugiri, Dorothea ;
Kraemer, Ursula ;
Heinrich, Joachim ;
de Hoogh, Kees ;
Key, Timothy ;
Peters, Annette ;
Cyrys, Josef ;
Concin, Hans ;
Nagel, Gabriele ;
Ineichen, Alex ;
Schaffner, Emmanuel ;
Probst-Hensch, Nicole .
EPIDEMIOLOGY, 2014, 25 (03) :368-378
[9]   The use of ambient air quality modeling to estimate individual and population exposure for human health research: A case study of ozone in the Northern Georgia Region of the United States [J].
Bell, Michelle L. .
ENVIRONMENT INTERNATIONAL, 2006, 32 (05) :586-593
[10]   A Spatio-Temporal Downscaler for Output From Numerical Models [J].
Berrocal, Veronica J. ;
Gelfand, Alan E. ;
Holland, David M. .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2010, 15 (02) :176-197