High-Quality HfO2 High-K Gate Dielectrics Deposited on Highly Oriented Pyrolytic Graphite via Enhanced Precursor Atomic Layer Seeding

被引:0
作者
Yin, Yu-Tung [1 ]
Huang, Chin-Chao [1 ]
Chiu, Po-Hao [1 ]
Jiang, Yu-Sen [1 ]
Hoo, Ju-Yu [1 ]
Chen, Miin-Jang [1 ]
机构
[1] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan
关键词
enhanced precursor atomic layer seeding (EPALS); activatedprecursors; high-<italic>K</italic> gate dielectrics; 2D materials; atomic layer deposition; GRAPHENE; TRANSISTORS; OXIDES; XPS;
D O I
10.1021/acsaelm.4c02224
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, an enhanced precursor atomic layer seeding (EPALS) assisted atomic layer deposition (ALD) is proposed to prepare high-quality hafnium oxide (HfO2) high-K gate dielectrics on highly oriented pyrolytic graphite (HOPG) surfaces. The EPALS technique addresses the challenge of depositing high-quality oxides directly on two-dimensional (2D) materials, which typically lack dangling bonds on their surfaces. By enhancing the precursor reactivity through remote plasma, the EPALS process facilitates the adsorption of precursors, thereby enabling the effective deposition of HfO2 on the HOPG surface without compromising its intrinsic sp2 structure. The HfO2 thin films prepared by the EPALS-assisted ALD method upon HOPG present desirable dielectric properties, characterized by a high dielectric constant of 19.65 and a low equivalent oxide thickness of 1.46 nm, as evidenced by the electrical characterization of a metal-insulator-metal structure. Furthermore, Raman and X-ray photoelectron spectroscopy analyses confirm the minimal impact of the EPALS process on the integrity of the HOPG surface. This study provides valuable insights into oxide deposition on 2D materials, paving the way for the advancement of high-performance electronic and optical devices based on graphene and other 2D materials.
引用
收藏
页码:1943 / 1952
页数:10
相关论文
共 39 条
[1]  
Schwierz F., Graphene transistors, Nat. Nanotechnol., 5, 7, pp. 487-496, (2010)
[2]  
Smith W.F., Hashemi J., Foundations of Materials Science and Engineering, (2006)
[3]  
Xia F., Farmer D.B., Lin Y.-M., Avouris P., Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Lett., 10, 2, pp. 715-718, (2010)
[4]  
Li T., Tu T., Sun Y., Fu H., Yu J., Xing L., Wang Z., Wang H., Jia R., Wu J., A native oxide high-κ gate dielectric for two-dimensional electronics, Nat. Electron., 3, 8, pp. 473-478, (2020)
[5]  
Li W., Zhou J., Cai S., Yu Z., Zhang J., Fang N., Li T., Wu Y., Chen T., Xie X., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices, Nat. Electron., 2, 12, pp. 563-571, (2019)
[6]  
Xu Y., Liu T., Liu K., Zhao Y., Liu L., Li P., Nie A., Liu L., Yu J., Feng X., Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors, Nat. Mater., 22, 9, pp. 1078-1084, (2023)
[7]  
Dlubak B., Kidambi P.R., Weatherup R.S., Hofmann S., Robertson J., Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition, Appl. Phys. Lett., 100, 17, (2012)
[8]  
Lee B., Park S.-Y., Kim H.-C., Cho K., Vogel E.M., Kim M.J., Wallace R.M., Kim J., Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics, Appl. Phys. Lett., 92, 20, (2008)
[9]  
Speck F., Ostler M., Rohrl J., Emtsev K.V., Hundhausen M., Ley L., Seyller T., Atomic layer deposited aluminum oxide films on graphite and graphene studied by XPS and AFM, Phys. Status Solidi (C), 7, 2, pp. 398-401, (2010)
[10]  
Xuan Y., Wu Y., Shen T., Qi M., Capano M.A., Cooper J.A., Ye P., Atomic-layer-deposited nanostructures for graphene-based nanoelectronics, Appl. Phys. Lett., 92, 1, (2008)