N-soliton, Hth-order breather, hybrid and multi-pole solutions for a generalized variable-coefficient Gardner equation with an external force in a plasma or fluid

被引:0
作者
Hao-Dong, Liu [1 ,2 ]
Tian, Bo [1 ,2 ]
Chen, Yu-Qi [1 ,2 ]
Cheng, Chong-Dong [1 ,2 ]
Gao, Xiao-Tian [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Plasma; Fluid; Generalized variable-coefficient Gardner equation with an external force; N-soliton solutions; Hth-order breather and hybrid solutions; Multi-pole solutions; WAVE SOLUTIONS; TRANSFORMATION; DYNAMICS; FLOW;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we investigate a generalized variable-coefficient Gardner equation with an external force in a plasma or fluid. Via the Hirota method, we obtain certain bilinear forms and N-soliton solutions, where N is a positive integer. We also derive the Hth-order breather and hybrid solutions through the complex conjugated transformations, where H is a positive integer. Moreover, multi-pole solutions are constructed with the limit method. Multi-soliton, breather-breather, soliton-breather and multi-pole interactions are studied. Influences of the external force and variable coefficients on the solutions are discussed analytically and graphically. For those nonlinear waves: (i) the external force affects the backgrounds and velocities; (ii) the damping coefficient affects the amplitudes, widths and velocities; (iii) the dispersive and dissipative coefficients affect the characteristic lines and velocities.
引用
收藏
页码:3655 / 3672
页数:18
相关论文
共 56 条
  • [1] On a modified Korteweg-de Vries equation for electrostatic structures in relativistic degenerate electron-positron plasma
    Abdikian, Alireza
    Ghanbari, Behzad
    [J]. RESULTS IN PHYSICS, 2023, 48
  • [2] Solitary and shocklike wave solutions for the Gardner equation in dusty plasmas
    Allehiany, F. M.
    Fares, M. M.
    Abdelsalam, U. M.
    Zobaer, M. S.
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 800 - 806
  • [3] Partial degeneration of finite gap solutions to the Korteweg-de Vries equation: soliton gas and scattering on elliptic backgrounds
    Bertola, M.
    Jenkins, R.
    Tovbis, A.
    [J]. NONLINEARITY, 2023, 36 (07) : 3622 - 3660
  • [4] Chai J., 2017, WAVE RANDOM COMPLEX, V2, P1366084
  • [5] Ablowitz-Kaup-Newell-Segur system, conservation laws and Backlund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science
    Chen, Yu-Qi
    Tian, Bo
    Qu, Qi-Xing
    Li, He
    Zhao, Xue-Hui
    Tian, He-Yuan
    Wang, Meng
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (25):
  • [6] Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics
    Cheng, Chong-Dong
    Tian, Bo
    Shen, Yuan
    Zhou, Tian-Yu
    [J]. NONLINEAR DYNAMICS, 2023, 111 (7) : 6659 - 6675
  • [7] Integrability, bilinearization, solitons and exact three wave solutions for a forced Korteweg-de Vries equation
    Das, Amiya
    Mandal, Uttam Kumar
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [8] Soliton interaction with external forcing within the Korteweg-de Vries equation
    Ermakov, Andrei
    Stepanyants, Yury
    [J]. CHAOS, 2019, 29 (01)
  • [9] Soliton interactions with an external forcing: The modified Korteweg-de Vries framework
    Flamarion, Marcelo V.
    Pelinovsky, Efim
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 165
  • [10] Some conservation laws for a forced KdV equation
    Gandarias, M. L.
    Bruzon, M. S.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (06) : 2692 - 2700