Learning prototypes from background and latent objects for few-shot semantic segmentation

被引:0
作者
Wang, Yicong [1 ]
Huang, Rong [1 ,3 ]
Zhou, Shubo [1 ,3 ]
Jiang, Xueqin [1 ,3 ]
Fang, Zhijun [2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[3] Donghua Univ, Engn Res Ctr Digitized Text & Apparel Technol, Minist Educ, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Few-shot semantic segmentation; Prototype learning; Self-attention mechanism; NETWORK;
D O I
10.1016/j.knosys.2025.113218
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot semantic segmentation (FSS) aims to segment target object within a given image supported by few samples with pixel-level annotations. Existing FSS framework primarily focuses on target area for learning a target-object prototype while directly neglecting non-target clues. As such, the target-object prototype has not only to segment the target object but also to filter out non-target area simultaneously, resulting in numerous false positives. In this paper, we propose a background and latent-object prototype learning network (BLPLNet), which learns prototypes from not only the target area but also the non-target counterpart. From our perspective, the non-target area is delineated into background full of repeated textures and salient objects, refer to as latent objects in this paper. Specifically, a background mining module (BMM) is developed to specially learn a background prototype by episodic learning. The learned background prototype replaces the target-object one for background filtering, reducing the false positives. Moreover, a latent object mining module (LOMM), based on self-attention mechanism, works together with the BMM for learning multiple soft-orthogonal prototypes from latent objects. Then, the learned latent-object prototypes, which condense the general knowledge of objects, are used in a target object enhancement module (TOEM) to enhance the target-object prototype with the guidance of affinity-based scores. Extensive experiments on PASCAL-5i and COCO-20i datasets demonstrate the superiority of the BLPLNet, which outperforms state-of-the-art methods by an average of 0.60% on PASCAL5i. Ablation studies validate the effectiveness of each component, and visualization results indicate that the learned latent-object prototypes indeed convey the general knowledge of objects.
引用
收藏
页数:11
相关论文
共 55 条
  • [11] Hariharan B, 2011, IEEE I CONF COMP VIS, P991, DOI 10.1109/ICCV.2011.6126343
  • [12] He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
  • [13] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [14] Strip Pooling: Rethinking Spatial Pooling for Scene Parsing
    Hou, Qibin
    Zhang, Li
    Cheng, Ming-Ming
    Feng, Jiashi
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4002 - 4011
  • [15] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269
  • [16] CCNet: Criss-Cross Attention for Semantic Segmentation
    Huang, Zilong
    Wang, Xinggang
    Huang, Lichao
    Huang, Chang
    Wei, Yunchao
    Liu, Wenyu
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 603 - 612
  • [17] Ke Lei, 2023, Advances in Neural Information Processing Systems
  • [18] Feature Weighting and Boosting for Few-Shot Segmentation
    Khoi Nguyen
    Todorovic, Sinisa
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 622 - 631
  • [19] Segment Anything
    Kirillov, Alexander
    Mintun, Eric
    Ravi, Nikhila
    Mao, Hanzi
    Rolland, Chloe
    Gustafson, Laura
    Xiao, Tete
    Whitehead, Spencer
    Berg, Alexander C.
    Lo, Wan-Yen
    Dolla'r, Piotr
    Girshick, Ross
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3992 - 4003
  • [20] Retain and Recover: Delving Into Information Loss for Few-Shot Segmentation
    Lang, Chunbo
    Cheng, Gong
    Tu, Binfei
    Li, Chao
    Han, Junwei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5353 - 5365