Theoretical Study on the Mechanism of the Electrocatalytic CO2 Reduction to Formate by an Iron Schiff Base Complex

被引:0
|
作者
Zhang, Ya-Qiong [1 ]
Chen, Jia-Yi [2 ]
Li, Man [2 ]
Liao, Rong-Zhen [2 ]
机构
[1] Hubei Univ Educ, Coll Chem & Life Sci, Hubei Key Lab Purificat & Applicat Plant Anticanc, Wuhan 430205, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Hubei Key Lab Mat Chem & Serv Failure, Key Lab Mat Chem Energy Convers & Storage,Minist E, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; HIGHLY EFFICIENT; VISIBLE-LIGHT; FE COMPLEXES; SELECTIVITY; CONVERSION; CATALYSIS; LIGAND; CYTOCHROME-P450; DEHYDROGENASE;
D O I
暂无
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The iron(III) chloride compound 6,6 '-di(3,5-ditert-butyl-2-hydroxybenzene)-2,2 '-bipyridine (Fe(tbudhbpy)Cl) can effectively catalyze the electrochemical CO2 reduction in N,N-dimethylformamide. Density functional calculations were conducted to investigate the mechanism and unravel the governing factors of product selectivity. The results suggest that the initial catalyst, Fe(tbudhbpy)Cl (formally FeIII-Cl), undergoes two reduction steps, accompanied by the dissociation of Cl-, leading to the formation of the active ferrous radical intermediate 2 (formally FeI). Without phenol, 2 attacks CO2 to generate the FeIII-carboxylate intermediate FeIII-CO2, followed by a one-electron reduction to generate FeII-CO2, which reacts with another CO2 to produce CO. This aligns with the experimental result that CO is the main product when the phenol is absent. In contrast, when phenol is presented, the triple reduced species 3 is protonated at its ligand N site to yield 3pt(N) (formally Fe0-NH), which subsequently performs a nucleophilic attack on CO2 to afford formate. This process occurs via an orthogonal electron/proton transfer mechanism, where two electrons and one proton are transferred from the ligand to the CO2 moiety. The redox noninnocent nature of the ligand is thus crucial for formate formation, as it facilitates electron and proton shuttling, enabling 3pt(N) to attack CO2 through this unusual mechanism effectively.
引用
收藏
页码:4657 / 4672
页数:16
相关论文
共 50 条
  • [21] Operando Spectroelectrochemistry Unravels the Mechanism of CO2 Electrocatalytic Reduction by an Fe Porphyrin
    Salame, Aude
    Cheah, Mun Hon
    Bonin, Julien
    Robert, Marc
    Anxolabehere-Mallart, Elodie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (51)
  • [22] Electrocatalytic CO2 Reduction to Formate on Cu Based Surface Alloys with Enhanced Selectivity
    Mosali, Venkata Sai Sriram
    Zhang, Xiaolon
    Zhang, Ying
    Gengenbach, Thomas
    Guo, Si-Xuan
    Puxty, Graeme
    Horne, Michael D.
    Bond, Alan M.
    Zhang, Jie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (24) : 19453 - 19462
  • [23] Improving Electrocatalytic CO2 Reduction over Iron Tetraphenylporphyrin with Triethanolamine as a CO2 Shuttle
    Yin, Zhiyuan
    Zhang, Mengchun
    Long, Yuchi
    Lei, Haitao
    Li, Xialiang
    Zhang, Xue-Peng
    Zhang, Wei
    Apfel, Ulf-Peter
    Cao, Rui
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [24] An impactful approach for visible photocatalytic reduction of CO2 accelerated with Schiff base-cobalt complex
    Wu, Fanghui
    Xu, Xudong
    Luo, Xiangrui
    Cheng, Yuansheng
    Xu, Hong
    Yuan, Guozan
    Kang, Yanshang
    Wei, Xianwen
    Wang, Wenhai
    Yan, Zhengquan
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (44) : 16891 - 16904
  • [25] Theoretical study on the synthesis of methylamine by electrocatalytic CO2 and NO3-co-reduction
    Luo, Fengling
    Guo, Ling
    Li, Jinji
    JOURNAL OF SOLID STATE CHEMISTRY, 2025, 343
  • [26] Computational and experimental study on the electrocatalytic reduction of CO2 to CO by a new mononuclear ruthenium(II) complex
    Haghighi, Farid Hajareh
    Hadadzadeh, Hassan
    Farrokhpour, Hossein
    Serri, Nafiseh
    Abdi, Khatereh
    Rudbari, Hadi Amiri
    DALTON TRANSACTIONS, 2014, 43 (29) : 11317 - 11332
  • [27] Mechanistic insight into electrocatalytic CO2 reduction using Lewis acid-base pairs
    Boraghi, Mahsasadat
    White, Travis A.
    INORGANICA CHIMICA ACTA, 2021, 526
  • [28] Ordered mesoporous electrocatalysts for highly selective formate production from electrocatalytic CO2 reduction
    Ahamd, Ashfaq
    Zhang, Chaoran
    Gu, Yichuan
    Jiang, Qu
    Sheng, Ziyang
    Feng, Ruohan
    Wang, Sihong
    Zhang, Haoyue
    Xu, Qianqing
    Yuan, Zijian
    Song, Fang
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [29] Oxygen vacancies enriched Bi based catalysts for enhancing electrocatalytic CO2 reduction to formate
    Zhao, Xiu-Hui
    Chen, Qing-Song
    Zhuo, De-Huang
    Lu, Jian
    Xu, Zhong-Ning
    Wang, Chong-Min
    Tang, Jing-Xiao
    Sun, Shi-Gang
    Guo, Guo-Cong
    ELECTROCHIMICA ACTA, 2021, 367 (367)
  • [30] Electrocatalytic CO2 reduction to syngas
    Chang, Bing
    Min, Zhaojun
    Liu, Ning
    Wang, Nan
    Fan, Maohong
    Fan, Jing
    Wang, Jianji
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (07) : 1085 - 1100