A Novel Mixture Least Squares Approach for Simultaneous Parameter/State and Unknown Input Estimation

被引:1
作者
Ding, Bo [1 ]
Wei, Yuanchu [1 ]
Zhang, Yong [2 ]
Yang, Wu [3 ]
机构
[1] Yangzhou Univ, Coll Informat Engn, Yangzhou 225127, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
[3] Guangxi Univ, Sch Elect Engn, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Covariance matrices; Estimation; Stochastic processes; Maximum likelihood estimation; Kalman filters; Vectors; Filtering algorithms; Linear stochastic systems; mixture least squares (MLSs); parameter/state estimation; unknown input estimation; MINIMUM-VARIANCE ESTIMATION; STATE ESTIMATION; SYSTEMS;
D O I
10.1109/TAC.2024.3450001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we introduce a novel mixture least squares (MLSs) algorithm to deal with the problems of simultaneous parameter/state and unknown input estimation. First, the MLSs algorithm is derived to estimate the desired parameter and unknown input, which can be regarded as a unified framework for deterministic least squares and stochastic least squares. The unbiasedness and optimality of the MLSs estimators are further verified. Then, based on the established MLSs algorithm, a new solution to simultaneous state and unknown input estimation (SUIE) problems is given. The proposed method is more concise and straightforward than the existing SUIE algorithms. The method provided in this article offers fresh insight into parameter/state estimation with unknown input.
引用
收藏
页码:1252 / 1258
页数:7
相关论文
共 25 条
[1]   Simultaneous input & state estimation, singular filtering and stability [J].
Abooshahab, Mohammad Ali ;
Alyaseen, Mohammed M. J. ;
Bitmead, Robert R. ;
Hovd, Morten .
AUTOMATICA, 2022, 137
[2]   A Kalman-filtering derivation of simultaneous input and state estimation [J].
Bitmead, Robert R. ;
Hovd, Morten ;
Abooshahab, Mohammad Ali .
AUTOMATICA, 2019, 108
[3]   Unbiased minimum-variance state estimation for linear systems with unknown input [J].
Cheng, Yue ;
Ye, Hao ;
Wang, Yongqiang ;
Zhou, Donghual .
AUTOMATICA, 2009, 45 (02) :485-491
[4]   Unbiased minimum variance estimation for systems with unknown exogenous inputs [J].
Darouach, M ;
Zasadzinski, M .
AUTOMATICA, 1997, 33 (04) :717-719
[5]   Extension of minimum variance estimation for systems with unknown inputs [J].
Darouach, M ;
Zasadzinski, A ;
Boutayeb, M .
AUTOMATICA, 2003, 39 (05) :867-876
[6]   Simultaneous input and state estimation with multi-step delay for linear stochastic systems based on infinity filtering and smoothing [J].
Ding, Bo ;
Ren, Zhengyu ;
Fang, Huajing .
SYSTEMS & CONTROL LETTERS, 2024, 185
[7]   Infinity augmented state Kalman filter and its application in unknown input and state estimation [J].
Ding, Bo ;
Zhang, Tianping ;
Fang, Huajing .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (16) :11916-11931
[8]   On the equivalence between the unbiased minimum-variance estimation and the infinity augmented Kalman filter [J].
Ding, Bo ;
Zhang, Tianping ;
Fang, Huajing .
INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (12) :2995-3002
[9]   Equivalence of recursive three-step filter and infinity augmented Kalman filter for linear discrete-time stochastic systems with direct feedthrough [J].
Ding, Bo ;
Zhang, Tianping .
IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (17) :2696-2702
[10]   Simultaneous input and state estimation for nonlinear systems with applications to flow field estimation [J].
Fang, Huazhen ;
de Callafon, Raymond A. ;
Cortes, Jorge .
AUTOMATICA, 2013, 49 (09) :2805-2812