Explainable exercise recommendation with knowledge graph

被引:0
|
作者
Guan, Quanlong [1 ,2 ]
Cheng, Xinghe [1 ,2 ]
Xiao, Fang [1 ,2 ]
Li, Zhuzhou [1 ,2 ]
He, Chaobo [6 ]
Fang, Liangda [1 ,3 ]
Chen, Guanliang [4 ]
Gong, Zhiguo [5 ]
Luo, Weiqi [2 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China
[2] Jinan Univ, Guangdong Inst Smart Educ, Guangzhou, Guangdong, Peoples R China
[3] Pazhou Lab, Guangzhou, Guangdong, Peoples R China
[4] Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia
[5] Univ Macau, Dept Comp & Informat Sci, Taipa, Macao, Peoples R China
[6] South China Normal Univ, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Exercise recommendation; Knowledge graph; Student feature extraction;
D O I
10.1016/j.neunet.2024.106954
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommending suitable exercises and providing the reasons for these recommendations is a highly valuable task, as it can significantly improve students' learning efficiency. Nevertheless, the extensive range of exercise resources and the diverse learning capacities of students present a notable difficulty in recommending exercises. Collaborative filtering approaches frequently have difficulties in recommending suitable exercises, whereas deep learning methods lack explanation, which restricts their practical use. To address these issue, this paper proposes KG4EER, an explainable exercise recommendation with a knowledge graph. KG4EER facilitates the matching of various students with suitable exercises and offers explanations for its recommendations. More precisely, a feature extraction module is introduced to represent students' learning features, and a knowledge graph is constructed to recommend exercises. This knowledge graph, which includes three primary entities - knowledge concepts, students, and exercises - and their interrelationships, serves to recommend suitable exercises. Extensive experiments conducted on three real-world datasets, coupled with expert interviews, establish the superiority of KG4EER over existing baseline methods and underscore its robust explainability.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Reinforcement Knowledge Graph Reasoning for Explainable Recommendation
    Xian, Yikun
    Fu, Zuohui
    Muthukrishnan, S.
    de Melo, Gerard
    Zhang, Yongfeng
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 285 - 294
  • [2] Jointly Learning Explainable Rules for Recommendation with Knowledge Graph
    Ma, Weizhi
    Zhang, Min
    Cao, Yue
    Jin, Woojeong
    Wang, Chenyang
    Liu, Yiqun
    Ma, Shaoping
    Ren, Xiang
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 1210 - 1221
  • [3] Social-Enhanced Explainable Recommendation With Knowledge Graph
    Liu, Chunyu
    Wu, Wei
    Wu, Siyu
    Yuan, Lu
    Ding, Rui
    Zhou, Fuhui
    Wu, Qihui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 840 - 853
  • [4] Knowledge Enhanced Graph Neural Networks for Explainable Recommendation
    Lyu, Ziyu
    Wu, Yue
    Lai, Junjie
    Yang, Min
    Li, Chengming
    Zhou, Wei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4954 - 4968
  • [5] KG4Ex: An Explainable Knowledge Graph-Based Approach for Exercise Recommendation
    Guan, Quanlong
    Xiao, Fang
    Cheng, Xinghe
    Fang, Liangda
    Chen, Ziliang
    Chen, Guanliang
    Luo, Weiqi
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 597 - 607
  • [6] A Joint Framework for Explainable Recommendation with Knowledge Reasoning and Graph Representation
    Zhang, Luhao
    Fang, Ruiyu
    Yang, Tianchi
    Hu, Maodi
    Li, Tao
    Shi, Chuan
    Wang, Dong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT III, 2022, : 351 - 363
  • [7] Explainable Artist Recommendation Based on Reinforcement Knowledge Graph Exploration
    Sakurai, Keigo
    Togo, Ren
    Ogawa, Takahiro
    Haseyama, Miki
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2022, 2022, 12177
  • [8] HAGERec: Hierarchical Attention Graph Convolutional Network Incorporating Knowledge Graph for Explainable Recommendation
    Yang, Zuoxi
    Dong, Shoubin
    KNOWLEDGE-BASED SYSTEMS, 2020, 204 (204)
  • [9] Explainable recommendation based on knowledge graph and multi-objective optimization
    Xie, Lijie
    Hu, Zhaoming
    Cai, Xingjuan
    Zhang, Wensheng
    Chen, Jinjun
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (03) : 1241 - 1252
  • [10] Explainable Recommendation Based on Weighted Knowledge Graphs and Graph Convolutional Networks
    Boughareb, Rima
    Seridi, Hassina
    Beldjoudi, Samia
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2023, 22 (03)