Local minima in quantum systems

被引:0
|
作者
Chen, Chi-Fang [1 ,2 ]
Huang, Hsin-Yuan [1 ,3 ,4 ]
Preskill, John [1 ,2 ]
Zhou, Leo [1 ,5 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[3] Google Quantum AI, Venice, CA 02135 USA
[4] MIT, Cambridge, MA 02139 USA
[5] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
基金
美国能源部; 美国国家科学基金会;
关键词
RENORMALIZATION-GROUP; COMPLEXITY; COMPUTATION; STATE; GENERATORS; ALGORITHMS;
D O I
10.1038/s41567-025-02781-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding ground states of quantum many-body systems is known to be hard for both classical and quantum computers. Consequently, when a quantum system is cooled in a low-temperature thermal bath, the ground state cannot always be found efficiently. Instead, the system may become trapped in a local minimum of the energy. In this work, we study the problem of finding local minima in quantum systems under thermal perturbations. Although local minima are much easier to find than ground states, we show that finding a local minimum is hard on classical computers, even when the task is merely to output a single-qubit observable at any local minimum. By contrast, we prove that a quantum computer can always find a local minimum efficiently using a thermal gradient descent algorithm that mimics natural cooling processes. To establish the classical hardness of finding local minima, we construct a family of two-dimensional Hamiltonians such that any problem solvable by polynomial-time quantum algorithms can be reduced to finding local minima of these Hamiltonians. Therefore, cooling systems to local minima is universal for quantum computation and, assuming that quantum computation is more powerful than classical computation, finding local minima is classically hard but quantumly easy.
引用
收藏
页码:654 / 660
页数:10
相关论文
共 50 条
  • [1] Local Minima in Quantum Systems
    Chen, Chi-Fang
    Huang, Hsin-Yuan
    Preskill, John
    Zhou, Leo
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1323 - 1330
  • [2] Escaping local minima with quantum circuit coherent cooling
    Feng, Jia-Jin
    Wu, Biao
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [3] Stability of Local Quantum Dissipative Systems
    Cubitt, Toby S.
    Lucia, Angelo
    Michalakis, Spyridon
    Perez-Garcia, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) : 1275 - 1315
  • [4] ADIABATIC OPTIMIZATION WITHOUT LOCAL MINIMA
    Jarret, Michael
    Jordan, Stephen P.
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (3-4) : 181 - 199
  • [5] Simulated quantum computation of global minima
    Zhu, Jing
    Huang, Zhen
    Kais, Sabre
    MOLECULAR PHYSICS, 2009, 107 (19) : 2015 - 2023
  • [6] Structured Local Minima in Sparse Blind Deconvolution
    Zhang, Yuqian
    Kuo, Han-Wen
    Wright, John
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [7] Local Convertibility and the Quantum Simulation of Edge States in Many-Body Systems
    Franchini, Fabio
    Cui, Jian
    Amico, Luigi
    Fan, Heng
    Gu, Mile
    Korepin, Vladimir
    Kwek, Leong Chuan
    Vedral, Vlatko
    PHYSICAL REVIEW X, 2014, 4 (04):
  • [8] Quantum Computer Systems for Scientific Discovery
    Alexeev, Yuri
    Bacon, Dave
    Brown, Kenneth R.
    Calderbank, Robert
    Carr, Lincoln D.
    Chong, Frederic T.
    DeMarco, Brian
    Englund, Dirk
    Farhi, Edward
    Fefferman, Bill
    Gorshkov, Alexey, V
    Houck, Andrew
    Kim, Jungsang
    Kimmel, Shelby
    Lange, Michael
    Lloyd, Seth
    Lukin, Mikhail D.
    Maslov, Dmitri
    Maunz, Peter
    Monroe, Christopher
    Preskill, John
    Roetteler, Martin
    Savage, Martin J.
    Thompson, Jeff
    PRX QUANTUM, 2021, 2 (01):
  • [9] LOCAL MINIMA FOR INDEFINITE QUADRATIC KNAPSACK-PROBLEMS
    VAVASIS, SA
    MATHEMATICAL PROGRAMMING, 1992, 54 (02) : 127 - 153
  • [10] Local Minima in Disordered Mean-Field Ferromagnets
    Song, Eric Yilun
    Gheissari, Reza
    Newman, Charles M.
    Stein, Daniel L.
    JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) : 576 - 596