共 12 条
[1]
Sun X., Et al., XNOR-RRAM: A scalable and parallel resistive synaptic architecture for binary neural networks, Proc. Design, Autom. Test Europe Conf. Exhibit. (DATE), pp. 1423-1428, (2018)
[2]
Kim H., Kim Y., Kim J.-J., In-memory batch-normalization for resistive memory based binary neural network hardware, Proc. 24th Asia South Pac. Design Autom. Conf., pp. 645-650, (2019)
[3]
Rajendran G., Et al., Application of resistive random access memory in hardware security: A review, Adv. Electron. Mater., 7, 12, (2021)
[4]
Galicia M.E., Et al., S3cure': Scramble, shuffle and shambles-secure deployment of weight matrices in memristor crossbar arrays, Proc. Int. Conf. Neuromorph. Syst., pp. 1-8, (2023)
[5]
Zou M., Et al., Security enhancement for RRAM computing system through obfuscating crossbar row connections, Proc. DATE, pp. 466-471, (2020)
[6]
Wang Y., Et al., A low cost weight obfuscation scheme for security enhancement of ReRAM based neural network accelerators, Proc. Asia South Pac. Design Autom. Conf., pp. 499-504, (2021)
[7]
Zou M., Et al., Enhancing security of memristor computing system through secure weight mapping, Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), pp. 182-187, (2022)
[8]
Zou M., Du N., Kvatinsky S., Review of security techniques for memristor computing systems, Front. Electron. Materials, 2, (2022)
[9]
Chavda C., Et al., Vulnerability analysis of on-chip access-control memory, Proc. 9th USENIX Workshop Hot Topics Storage File Syst. (HotStorage 17), pp. 1-6, (2017)
[10]
Huynh N., Et al., Hardware security of emerging non-volatile memory devices under imaging attacks, Proc. Int. Conf. Appl. Electron. (AE), pp. 1-4, (2021)