Optimization of Sample Size, Data Points, and Data Augmentation Stride in Vibration Signal Analysis for Deep Learning-Based Fault Diagnosis of Rotating Machines

被引:0
作者
Kibrete, Fasikaw [1 ,2 ]
Woldemichael, Dereje Engida [1 ,2 ]
Gebremedhen, Hailu Shimels [1 ,2 ]
机构
[1] Addis Ababa Sci & Technol Univ, Coll Engn, Dept Mech Engn, POB 16417, Addis Ababa, Ethiopia
[2] Addis Ababa Sci & Technol Univ, Artifcial Intelligence & Robot Ctr Excellence, POB 16417, Addis Ababa, Ethiopia
关键词
deep learning; fault diagnosis; rotating machine; sample size; vibration signal analysis; ARTIFICIAL NEURAL-NETWORKS;
D O I
10.1155/vib/5590157
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In recent years, deep learning models have increasingly been employed for fault diagnosis in rotating machines, with remarkable results. However, the accuracy and reliability of these models in fault diagnosis tasks can be significantly influenced by critical input parameters, such as the sample size, the number of data points within each sample, and the augmentation stride in vibration signal analysis. To address this challenge, this paper proposes a new adaptive method based on Bayesian optimization to determine the optimal combination of these input parameters from raw vibration signals and enhance the diagnostic performance of deep learning models. This study utilizes a one-dimensional convolutional neural network (1-D CNN) as the deep learning model for fault classification. The proposed adaptive 1-D CNN-based fault diagnosis method is validated via vibration signals collected from motor rolling bearings and achieves a fault diagnosis accuracy of 100%. Compared with existing CNN-based diagnosis methods, this adaptive approach not only achieves the highest accuracy on the testing set but also demonstrates stable performance during training, even under varying operating conditions. These results indicate the importance of optimizing the input parameters of deep learning models employed in fault diagnosis tasks.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Deep Learning for Fault Diagnosis Based on Multi-sourced Heterogeneous Data
    Ma, Yan
    Guo, Zhihong
    Su, Jianjun
    Chen, Yufeng
    Du, Xiuming
    Yang, Yi
    Li, Chengqi
    Lin, Ying
    Geng, Yujie
    2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2014,
  • [32] Deep learning-based gesture recognition for surgical applications: A data augmentation approach
    Santiago, Sofia Sorbet
    Cifuentes, Jenny Alexandra
    EXPERT SYSTEMS, 2024, 41 (12)
  • [33] Temporal and spatial satellite data augmentation for deep learning-based rainfall nowcasting
    Yesilkoy, Ozlem Baydaroglu
    Demir, Ibrahim
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (03) : 589 - 607
  • [34] Metric Learning-Based Fault Diagnosis and Anomaly Detection for Industrial Data With Intraclass Variance
    Huang, Keke
    Wu, Shujie
    Sun, Bei
    Yang, Chunhua
    Gui, Weihua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 547 - 558
  • [35] Deep learning GAN-based data generation and fault diagnosis in the data center HVAC system
    Du, Zhimin
    Chen, Kang
    Chen, Siliang
    He, Jinning
    Zhu, Xu
    Jin, Xinqiao
    ENERGY AND BUILDINGS, 2023, 289
  • [36] Influence of Autoencoder-Based Data Augmentation on Deep Learning-Based Wireless Communication
    Li, Linyu
    Zhang, Zhengming
    Yang, Luxi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (09) : 2090 - 2093
  • [37] Deep Learning based CP-OFDM Signal Classification with Data Augmentation
    Combo, Jorge
    Tato, Anxo
    Escudero-Garzas, J. Joaquin
    Perez Roca, Luis P.
    Gonzalez, Pablo
    2022 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2022, : 352 - 357
  • [38] Fault diagnosis using signal processing and deep learning-based image pattern recognition
    Ren, Zhenxing
    Guo, Jianfeng
    TM-TECHNISCHES MESSEN, 2024, 91 (02) : 129 - 138
  • [39] Deep Reinforcement Learning-Based Online Domain Adaptation Method for Fault Diagnosis of Rotating Machinery
    Li, Guoqiang
    Wu, Jun
    Deng, Chao
    Xu, Xuebing
    Shao, Xinyu
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) : 2796 - 2805
  • [40] Machine Learning-based Explainable Stator Fault Diagnosis in Induction Motor using Vibration Signal
    Sinha, Aparna
    Das, Debanjan
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,