共 57 条
- [1] Tang B., Shan L., Liang S., Zhou J., Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12, 11, pp. 3288-3304, (2019)
- [2] Li C., Jin S., Archer L.A., Nazar L.F., Toward practical aqueous zinc-ion batteries for electrochemical energy storage, Joule, 6, 8, pp. 1733-1738, (2022)
- [3] Hou Z., Zhang B., Boosting Zn metal anode stability: from fundamental science to design principles, Ecomat, 4, 6, (2022)
- [4] Ma L.T., Chen S.M., Li N., Liu Z.X., Tang Z.J., Zapien J.A., Chen S.M., Fan J., Zhi C.Y., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries, Adv. Mater., 32, 14, (2020)
- [5] Hao Y., Feng D.D., Hou L., Li T.Y., Jiao Y.C., Wu P.Y., Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode, Adv. Sci., 9, 7, (2022)
- [6] Yao B.W., Wu S.W., Wang R.X., Yan Y.C., Cardenas A., Wu D., Alsaid Y., Wu W.Z., Zhu X.Y., He X.M., Hydrogel ionotronics with ultra-low impedance and high signal fidelity across broad frequency and temperature ranges, Adv. Funct. Mater., 32, 10, (2022)
- [7] Hu E.Y., Yang X.Q., Rejuvenating zinc batteries, Nat. Mater., 17, 6, pp. 480-481, (2018)
- [8] Park S.H., Byeon S.Y., Park J.H., Kim C., Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes, ACS Energy Lett., 6, 9, pp. 3078-3085, (2021)
- [9] Hao J., Yuan L., Ye C., Chao D., Davey K., Guo Z., Qiao S.Z., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents, Angew. Chem. Int. Ed., 60, 13, pp. 7366-7375, (2021)
- [10] Ji D.H., Kim J., Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries, Nano-Micro Lett., 16, 1, (2024)