Linkage Microenvironment Modulation in Triazine-Based Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Peroxide Production

被引:0
|
作者
Liu, Rongchen [1 ]
Zhang, Mengqi [1 ]
Zhang, Fulin [2 ]
Zeng, Bing [2 ]
Li, Xia [1 ]
Guo, Zhiguang [1 ]
Lang, Xianjun [2 ]
机构
[1] Hubei Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Green Preparat & Applicat Funct Mat, Wuhan 430062, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Organ & Polymer Optoelect Mat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent organic frameworks; microenvironment modulation; photocatalytic reactions; quinoline linkage; triazine; EFFICIENT; WATER;
D O I
10.1002/smll.202411625
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Covalent organic frameworks (COFs), known for the precise tunability of molecular structures, hold significant promise for photocatalytic hydrogen peroxide (H2O2) production. Herein, by systematically altering the quinoline (QN) linkages in triazine (TA)-based COFs via the multi-component reactions, six R-QN-TA-COFs are synthesized with identical skeletons but different substituents. The fine-tuning of the optoelectronic properties and local microenvironment of COFs is allowed, thereby optimizing charge separation and improving interactions with dissolved oxygen. Consequently, MeO-QN-TA-COF is customized to achieve an impressive rate of H2O2 production up to 7384 mu mol g(-)1 h(-)1 under an air atmosphere in water without any sacrificial agents, surpassing most of the reported COF photocatalysts. Its high stability is demonstrated through five consecutive recycling experiments and the characterization of the recovered COF. The reaction mechanism for the H2O2 production is further investigated using a suite of quenching experiments, in situ spectroscopic analysis, and theoretical calculations. The enhanced photocatalytic H2O2 production over MeO-QN-TA-COF is through 2e(-) oxygen reduction reaction and water oxidation reaction pathways. Overall, the crucial role of linkage microenvironment modulation in the design of COFs for solar-driven effective photocatalytic H2O2 production.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Tris(triazolo)triazine-Based Covalent Organic Frameworks for Efficiently Photocatalytic Hydrogen Peroxide Production
    Zhang, Zhenwei
    Zhang, Qi
    Hou, Yuxin
    Li, Jiali
    Zhu, Shanshan
    Xia, Hong
    Yue, Huijuan
    Liu, Xiaoming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (45)
  • [2] Modification of Covalent Triazine-Based Frameworks for Photocatalytic Hydrogen Generation
    Xie, Jijia
    Fang, Zhiping
    Wang, Hui
    POLYMERS, 2022, 14 (07)
  • [3] Enhanced Photocatalytic Production of Hydrogen Peroxide by Covalent Triazine Frameworks with Stepwise Electron Transfer
    Zhang, Hao
    Wei, Wenxin
    Chi, Kai
    Zheng, Yong
    Kong, Xin Ying
    Ye, Liqun
    Zhao, Yan
    Zhang, Kai A. I.
    ACS CATALYSIS, 2024, 14 (23): : 17654 - 17663
  • [4] Nitrogen-Rich Triazine-Based Covalent Organic Frameworks as Efficient Visible Light Photocatalysts for Hydrogen Peroxide Production
    Yang, Shu
    Zhi, Keke
    Zhang, Zhimin
    Kerem, Rukiya
    Hong, Qiong
    Zhao, Lei
    Wu, Wenbo
    Wang, Lulu
    Wang, Duozhi
    NANOMATERIALS, 2024, 14 (07)
  • [5] Cyanide-based Covalent Organic Frameworks for Enhanced Overall Photocatalytic Hydrogen Peroxide Production
    Zhou, Enbo
    Wang, Futong
    Zhang, Xiang
    Hui, Yangdan
    Wang, Yaobing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (19)
  • [6] Modulating electronic structure of triazine-based covalent organic frameworks for photocatalytic organic transformations
    Gu, Zhangjie
    Wang, Jinjian
    Shan, Zhen
    Wu, Miaomiao
    Liu, Tongtong
    Song, Liang
    Wang, Guixiang
    Ju, Xuehai
    Su, Jian
    Zhang, Gen
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (34) : 17624 - 17632
  • [7] Pyrene-Based Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production
    Sun, Jiamin
    Jena, Himanshu Sekhar
    Krishnaraj, Chidharth
    Rawat, Kuber Singh
    Abednatanzi, Sara
    Chakraborty, Jeet
    Laemont, Andreas
    Liu, Wanlu
    Chen, Hui
    Liu, Ying-Ya
    Leus, Karen
    Vrielinck, Henk
    Van Speybroeck, Veronique
    Van Der Voort, Pascal
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (19)
  • [8] Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production
    Huang, Wei
    He, Qing
    Hu, Yongpan
    Li, Yanguang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) : 8676 - 8680
  • [9] Linkage Microenvironment of Azoles-Related Covalent Organic Frameworks Precisely Regulates Photocatalytic Generation of Hydrogen Peroxide
    Mou, Yi
    Wu, Xiaodong
    Qin, Chencheng
    Chen, Junying
    Zhao, Yanlan
    Jiang, Longbo
    Zhang, Chen
    Yuan, Xingzhong
    Ang, Edison Huixiang
    Wang, Hou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (36)
  • [10] Rational Design of Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production
    Ou, Yang
    Zhang, Yifan
    Luo, Wen
    Wu, Yang
    Wang, Yong
    MACROMOLECULAR RAPID COMMUNICATIONS, 2025,