Exploring magnetic disorder in inverted core-shell nanoparticles: the role of surface anisotropy and core/shell coupling

被引:0
作者
Ccahuana, Damaso [1 ]
De Biasi, Emilio [1 ,2 ]
机构
[1] Univ Nacl Cuyo, Inst Balseiro, R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina
[2] CONICET CNEA, Inst Nanociencia & Nanotecnol, R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina
关键词
core/shell; exchange coupling; surface anisotropy; nanomagnetism; magnetic ordering; interface coupling; EXCHANGE BIAS; COERCIVITY;
D O I
10.1088/1361-648X/ad8d2a
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we have studied the effect of internal coupling in magnetic nanoparticles with inverted core-shell structure (antiferromagnet-ferrimagnet) and also magnetic surface anisotropy, performing Monte Carlo simulations based on a micromagnetic model applied in the limit of lattice size equal to the crystalline unit cell. In the treatment, different internal regions of the particle were labeled in order to analyze the magnetic order and the degree of coupling between them. The results obtained are in agreement with experimental observations in CoO/CoFe2O4 and ZnO/CoFe2O systems, which we have taken as reference. It is observed that the surface anisotropy decreases the coercive field and the blocking temperature of the system. However, the core/shell coupling improves these properties and magnetically hardens the system. Our study shows that a significant magnetic stress is generated in the system, leading to magnetic disorder in the spins of the particle interface. On the other hand, in cases of high surface anisotropy, within a range of interfacial exchange values, a clear magnetic disorder is observed in the shell, which leads to anomalous behavior because the magnetization reversal process is no longer coherent.
引用
收藏
页数:20
相关论文
共 47 条
[1]   Optimal phase space sampling for Monte Carlo simulations of Heisenberg spin systems [J].
Alzate-Cardona, J. D. ;
Sabogal-Suarez, D. ;
Evans, R. F. L. ;
Restrepo-Parra, E. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (09)
[2]   The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe2O4 nanoparticles [J].
Aslibeiki, B. ;
Kameli, P. ;
Salamati, H. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (06)
[3]   The metropolis algorithm [J].
Beichl, I ;
Sullivan, F .
COMPUTING IN SCIENCE & ENGINEERING, 2000, 2 (01) :65-69
[4]  
Binder K, 2010, GRAD TEXTS PHYS, P1, DOI 10.1007/978-3-642-03163-2
[5]   Exchange Bias in Nanostructures: An Update [J].
Blachowicz, Tomasz ;
Ehrmann, Andrea ;
Wortmann, Martin .
NANOMATERIALS, 2023, 13 (17)
[6]   CoFe2O4 magnetic ceramic derived from gel and densified by spark plasma sintering [J].
Cernea, Mann ;
Galizia, Pietro ;
Ciuchi, Ioana ;
Aldica, Gheorghe ;
Mihalache, Valentina ;
Diamandescu, Lucian ;
Galassi, Carmen .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 656 :854-862
[7]   A numerical study on the interplay between the intra-particle and interparticle characteristics in bimagnetic soft/soft and hard/soft ultrasmall nanoparticle assemblies [J].
da Silva, Franciscarlos Gomes ;
Vasilakaki, Marianna ;
Gomes, Rafael Cabreira ;
Aquino, Renata ;
Cortez Campos, Alex Fabiano ;
Dubois, Emmanuelle ;
Perzynski, Regine ;
Depeyrot, Jerome ;
Trohidou, Kalliopi .
NANOSCALE ADVANCES, 2022, 4 (18) :3777-3785
[8]   Origin of antiferromagnetism in CoO: A density functional theory study [J].
Deng, Hui-Xiong ;
Li, Jingbo ;
Li, Shu-Shen ;
Xia, Jian-Bai ;
Walsh, Aron ;
Wei, Su-Huai .
APPLIED PHYSICS LETTERS, 2010, 96 (16)
[9]   Atomistic spin model simulations of magnetic nanomaterials [J].
Evans, R. F. L. ;
Fan, W. J. ;
Chureemart, P. ;
Ostler, T. A. ;
Ellis, M. O. A. ;
Chantrell, R. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (10)
[10]   Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles [J].
Fabris, Fernando ;
Lima, Enio, Jr. ;
De Biasi, Emilio ;
Troiani, Horacio E. ;
Vasquez Mansilla, Marcelo ;
Torres, Teobaldo E. ;
Fernandez Pacheco, Rodrigo ;
Ricardo Ibarra, M. ;
Goya, Gerardo F. ;
Zysler, Roberto D. ;
Winkler, Elin L. .
NANOSCALE, 2019, 11 (07) :3164-3172